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Blocking

Why do we care about blocking?
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Composite of Anomalous Z500

(300E blocked during DJF) Dur’ing b|OCking:
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T * An anomalous ridge exists to the
- [ north and an anomalous trough

to its south.

* This results in a reversal of the
climatological westerlies to
easterlies.

_ _ * This reversal blocks the jet
Climatological .
: : stream, forcing large-scale
westerlies are either T ) ) ]
weakened or \ e stationary waves and a diversion
completely reversed in . N f/ . Wﬁ‘%«ﬂ of the storm track.
this region. el e ’ e This pattern resembles the
R i negative phase of the North
Atlantic Oscillation (NAO).
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The Tibaldi and Molteni (1990) index is one amongst many blocking indices
(Barnes et al. 2012).
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Composite of Anomalous Z500
(210E blocked during JFM)
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Examples of impacts:

Blocks can happen at
any longitude. Here’s
an example over the
Pacific.
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* Extensive drought in the West (Wise
2016)

* Divert atmospheric rivers into Alaska
(Baggett et al. 2015)

* Extreme cold conditions (Wang et
al. 2010; Marinaro et al. 2015)

* Sudden stratospheric warmings
(Martius et al. 2009; Butler et al. 2017)

Because blocks can persist for weeks,
knowledge of blocking episodes and their
surface impacts can perhaps lead to
enhanced predictive skill of Week 3-4
temperature and precipitation across the
United States.
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Climatological Blocking Frequency
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* Blocking occurs most frequently over the Atlantic sector.

*  Which index should we use? Which blocking longitude?

*  We tried many blocking-related indices, but we have found using the North Atlantic
Oscillation (NAO) for the Atlantic and the Pacific-North American pattern (PNA) for
the Pacific as “blocking” indices work well (Croci-Maspoli et al. 2007).

* Forthcoming results shown in this presentation use the NAO and PNA.




CPC Forecast Tools for Week 3-4

A brief overview of CPC’s forecasting
process...



CPC Forecast Tools for Week 3-4
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CPC Forecast Tools for Week 3-4

*  Week 3-4 outlooks are issued once per week on Friday.

* A ssingle forecaster (rotated weekly) is assigned to make the official outlook.
* The forecaster receives input from several tools:

GEFSv12, ECMWE CFSv2, GEMv3,
JMA, and models participating in SubX

v

|. Dynamical Models

2. Statistical Models

3. Model Blends

4. Intuition and Consistency




CPC Forecast Tools for Week 3-4

*  Week 3-4 outlooks are issued once per week on Friday.

* A ssingle forecaster (rotated weekly) is assigned to make the official outlook.
* The forecaster receives input from several tools:

|. Dynamical Models

Multiple Linear Regression (MLR)*,
Phase Model, Constructed Analog,
Linear Inverse Model

2. Statistical Models

v

3. Model Blends

4. Intuition and Consistency

*Because the dynamical models are typically deficient at simulating blocking, along with
stratosphere-troposphere interactions at extended leads (Domeisen et al. 2020a,b;
Quinting and Vitart 2019), we focus on improving CPC’s MLR statistical model via a

hybridization approach with blocking-related indices as forecasted by the dynamical
models (e.g., Kim et al. 2021)




CPC Forecast Tools for Week 3-4

Week 3-4 outlooks are issued once per week on Friday.

A single forecaster (rotated weekly) is assigned to make the official outlook.
The forecaster receives input from several tools:

|. Dynamical Models

2. Statistical Models

3. Model Blends

4. Intuition and Consistency

\ 4

Equal-Weighted, Manual Blend,
Autoblend
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CPC Forecast Tools for Week 3-4

*  Week 3-4 outlooks are issued once per week on Friday.
* A ssingle forecaster (rotated weekly) is assigned to make the official outlook.
* The forecaster receives input from several tools:

|. Dynamical Models

2. Statistical Models

3. Model Blends

Peer input, recent model errors,

persistence, soil moisture, coherent
MJO

v

4. Intuition and Consistency
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CPC Forecast Tools for Week 3-4
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*  Week 3-4 outlooks are issued once per week on Friday.
* A ssingle forecaster (rotated weekly) is assigned to make the official outlook.
* The forecaster receives input from several tools:

|. Dynamical Models \
Categorical above or below normal
2. Statistical Models . outlooks of temperature and

3. Model Blends //: precipitation, averaged over Week 3-4.

4. Intuition and Consistency

* The forecaster presents a preliminary outlook at a weekly forecast discussion. Input
is received, adjustments are made, and the outlook is made.

* Temperature outlooks are operational while precipitation outlooks are still
experimental due to lack of skill.
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Original-MLR

What is CPC’s Multiple Linear
Regression Model (original-MLR)?
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Original-MLR Schematic (Training)

Past Predictor Current Predictors Predictand

RMM| RMM2
Day +0 || Day +0

|

Original-MLR Observed
(DaESN-SIOt i.dil 4) —_— Statistical ) Week 3-4 T&P
y Model for CONUS &
Alaska

Trend
Day +0 * Training: 1981-2010
* Verification: 201 1-2021

Harnos et al., in prep.
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Original-MLR Schematic (Verification) & ¥
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Past Predictor Current Predictors Predictand

RMMI RMM2
Day +0 || Day +0

|

Original-MLR Forecasted
D ENSIOt3.4I4 EEE— Statistical — Week 3'4 T&P
(Days -1 to -14) Model for CONUS &
Alaska

Trend
Day +0 * Training: 1981-2010
* Verification: 201 1-2021

Harnos et al., in prep.
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Original-MLR Regression Coefficients

Temperature
ENSO 34
(Days -1 to -14)
Week -2
Week 2-3
Week 3-4
075 060 -0.45 030 -0.15 015 030 o.m K per index

* Trend remains constant with lead-time
* MJO and ENSO signals persist out to Week 3-4
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Original Multiple-Linear Regression Forecast
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MLR-NAO

How does an MLR-NAO perform
compared to the original-MLR?

18



MLR-NAO Schematic (Training)

Past Predictor

ENSO3.4
(Days -1 to -14)

Current Predictors Future Predictor Predictand
RMMI RMM?2
Day +0 || Day +0
Observed
l l Day +14
/ NAO
MLR-NAO
Statistical ) Observed
Model ¢ Week 3-4 T&P
for CONUS
Trend
Day +0 * Training: 1981-2010

Verification: 201 1-2021
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MLR-NAO Schematic (Verification)

Past Predictor

Future Predictor

ENSO3.4
(Days -1 to -14)

Current Predictors (Bridging / Hybridization) Predictand
RMMI RMM?2
Day +0 || Day +0
GEFS
l l Day +14
/ NAO
MLR-NAO Forecasted
Statistical — Week 3-4 T&P
Model for CONUS
Trend
Day +0 * Training: 1981-2010

* Verification: 201 1-2021
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MLR-NAO Regression Coefficients

Week 1-2

Week 2-3

K per index

Week 3-4

I Y I
0.15 0.30 045 0.60 0.75

[ [ N S .
-0.75 -0.60 -0.45 -0.30 -0.15

Training the MLR-NAO on the observed Day +14 NAO provides a much stronger Week 3-4 signal,
so hybridization/bridging the statistical MLR with values of the NAO forecasted by the dynamical
21

models may be ideal.
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GEFS NAO Skill Scores

Observed NAO versus GEFS NAO

season

T T T

[ [ [ [ [ [
+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16

lead day

0 0.102030.4050.60.70809 1
correlation

*  GEFS forecast versus observations
* The NAO is based on CPC’s methods (RPCA on Z500; Barnston & Livezey 1987)

* NAO skill scores peak in winter, with correlations exceeding 0.5 through Day +14, when averaged
across all seasons.
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Original-MLR versus MLR-NAO
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Seasonal Skill Score Improvement of the MLR-NAO

over the original-MLR

Week 3-4

season
<
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lead day of predictor
Corrected-GEFS NAO
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verification domain: CONUS/AK

AHSS

Difference in Week 3-4
TEMPERATURE skill scores

original-MLR versus MLR-NAO

Predictor: GEFS Days +1 to +15
NAO

Verification Period: 201 1-2021,
Tuesday and Fridays

Key Points:

*  Generally, the MLR-NAO
offers the most improvement
during non-summer months.

* The greatest improvement is
provided using the GEFS NAO
from Day +14

*  One could make the argument
that we should use predictors
with smaller leads during fall.
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Temperature Difference in Week 3-4
original-MLR versus MLR-NAO during NDJFMA (2011-2021) TEMPERATURE skill scores
during All Forecast Initializations
original-MLR MLR-NAO e original-MLR versus MLR-
e NAO
- e . e
51‘? e ! = T A .
/ ; > 7 R Predictor: GEFS Day +14
T 7 . § & NAO
HSS = 1.7 HSS =14.5 o o o
CONUS HSS =10.6 CONUS HSS =15 T’!ﬁmujt’l,# ' e Verification Period: 201 |-
AK HSS = 17.2 AK HSS = 12 = H"_‘i-; 2021 Tuesday and Frid
n =531 n=531 W T 3w » luesday and rridays
T [ [ O Hss uss | © -Additional Conditions:
36 24 -12 0 12 24 36 36 24 -12 0 12 24 36 during November-April only
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Pty S improve by ~24%.
e *  Generally, the MLR-
A HSS =28 i NAO offers
ACONUS HSS = 4.4 B ,
AAK HSS = -5.2 ik improvements over
n=531 5\\ i CONUS and makes
things worse over AK.
I T [ [ [ [ [T T | -
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~ .
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MLR-PNA

How does an MLR-PNA perform
compared to the original-MLR?
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MLR-PNA Schematic (Training)

Past Predictor

ENSO3.4
(Days -1 to -14)

Current Predictors Future Predictor Predictand
RMMI RMM?2
Day +0 || Day +0
Observed
l l Day +12
_—| PNA
MS!C_;;-SEZIA Observed
Model < Week 3-4 T&P
for Alaska
Trend
Day +0 * Training: 1981-2010

Verification: 201 1-2021
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MLR-PNA Schematic (Verification)

Past Predictor

Current Predictors

Future Predictor

(Bridging / Hybridization) Predictand

ENSO3.4
(Days -1 to -14)

Forecasted

— Week 3_4 T&P

RMMI RMM2
Day +0 || Day +0
GEFS
l l Day +12
_— | PNA
MLR-PNA
Statistical
Model
Trend
Day +0

for Alaska

Training: 1981-2010
Verification: 201 1-2021
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Week 1-2

Week 2-3

Week 3-4 |

[T [ I I I I N N N N N | ;
-0.75 -0.60 -0.45 -0.30 -0.15 0.15 0.0 045 060 075 Kperindex

* Training the MLR-PNA on the observed Day +12 NAO provides a much stronger Week 3-4 signal,
so hybridization/bridging the statistical MLR with values of the PNA forecasted by the dynamical
models may be ideal.
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GEFS PNA Skill Scores

Observed PNA versus GEFS PNA
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correlation

*  GEFS forecast versus observations
e The PNA is based on CPC’s methods (RPCA on Z500; Barnston & Livezey 1987)

* PNA skill scores peak in winter, with correlations exceeding 0.5 through Day +14, when averaged
across all seasons.
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original-MLR versus MLR-PNA
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Seasonal Skill Score Improvement of the MLR- Difference in Week 3-4
PNA over the original-MLR TEMPERATURE skill scores
Week 3-4
- L 1L L L L1 TE I gl L1 |« original-MLR versus MLR-NAO
Q7 -
;‘0_ — |+ Predictor: GEFS Days +1 to +15
> - PNA
¥ ] -
§ 5‘;"?.— — | * Verification Period: 201 1-2021,
g 57 B Tuesday and Fridays
) '%\b: B
\:\1\_ | | © Key Points:
qég— — *  Generally, the MLR-PNA offers
§<§< 7 B the most improvement during
?9’ 1T 1 1 1 T 1T 1T T T T TjIr[r 1.1 non-summer months.
o-MLR+1 +2 +3 +4 +5 46 +7 +8 +9 +10 +11|+12}+13 +14 +15 * The greatest improvement is
lead day of predictor provided using the GEFS PNA
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verification domain: CONUS/AK
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Temperature Difference in Week 3-4
original-MLR versus MLR-PNA during NDJFMA (2011-2021) TEMPERATURE skill scores
during All Forecast Initializations
original-MLR MLR-PNA e original-MLR versus MLR-
e e e s e PNA
. D P o e e ALy ey
T = <:-‘\ T e = .
— . i = | = : *  Predictor: GEFS Day +12
e o PNA
HSS = 11.7 HSS = 13.1
ciiuﬁsHsss :7120'6 CCLNKU: 3133:51_?'7 * Verification Period: 201 | -
ne53l N y 2021, Tuesday and Fridays
I T [ [ [ [ [ O | Hss I | mmmn 4ss | Additional Conditions:
36 -24 -12 0 12 24 36 36 -24 -12 0 12 24 36 during November-April only
MLR-PNA minus original-MLR * Key Points:
— i i .W_ki;:__’h N ° .
N —— éﬁﬁ; Fi Qverall skill sco:es
ST R e improve by ~11%.

< L ML

s e o *  Generally, the MLR-
. PNA offers

"AHSS =15

ACONUS HSS = 0.1 _
AAK HSS = 8.5 improvements over
n = 531 Alaska and does little
for CONUS.
18 -12 6 0 6 12 18 A~HSS «  Skill scores over Alaska

improve by ~49%.

Predictor: corrected-GEFS Day +12 PNA (CPC)
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Original-MLR versus Merged-MLR

Should we create a merged-MLR,

where we use the MLR-NAO to
forecast for CONUS and the MLR-
PNA to forecast for Alaska!?
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Original-MLR versus Merged-MLR
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Temperature

original-MLR versus merged-MLR during NDJFMA (2011-2021)
during All Forecast Initializations

merged-MLR
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HSS = 11.7 e 'HSS = 16.8
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-18 -12 6 0 6 12 18

Predictor: corrected-GEFS D+12 PNA (CPC) / D+14 NAO (CPC)

Difference in Week 3-4
TEMPERATURE skill scores

* original-MLR versus
merged-MLR

* Predictor: GEFS Day +14
NAO & GEFS Day +12 PNA

* Verification Period: 201 |-
2021, Tuesday and Fridays

* Additional Conditions:
during November-April only

* Key Points:

*  Overall skill scores
improve by ~44%.

»  Skill score
improvements exist
nearly everywhere
except for the Upper
Midwest.
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Original-MLR versus Merged-MLR

How does the merged-MLR
perform during Forecasts of
Opportunity?
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Original-MLR versus Merged-MLR
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Temperature

original-MLR versus merged-MLR during NDJFMA (2011-2021)
during Forecast Initializations when |Day+0 NAO| >= 0.85 and |Day+0 NAO| >= 0.85

original-MLR merged-MLR
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merged-MLR minus orlglnal MLR
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AAK HSS = 6.5
n=176_

Predictor: corrected-GEFS D+12 PNA (CPC) / D+14 NAQ (CPC)

Difference in Week 3-4
TEMPERATURE skill scores

* original-MLR versus
merged-MLR

* Predictor: GEFS Day +14
NAO & GEFS Day +12 PNA

* Verification Period: 201 |-
2021, Tuesday and Fridays

* Additional Conditions:
during November-April only &
when the observed NAO is
amplified on Day 0

* Key Points:

e Overall skill scores
improve by ~82% over
CONUS/AK

* The greatest
improvements are
located over the Central
Plains and Southeast.

* Forecasts of
Opportunity! (Mariotti
et al. 2020) 35




Merged-MLR versus GEFS

How does the merged-MLR

perform compared to the
GEFSv12?
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Merged-MLR versus GEFS
Difference in Week 3-4
TEMPERATURE skill scores

merged-MLR versus GEFS

Temperature
merged-MLR versus GEFSv12 during NDJFMA (2011-2019)
Predictor: GEFS Day +14

during Forecast Initializations when |Day+0 NAO| >= 0.85 and |Day+0 NAO| >= 0.85
merged-MLR
o SR o
NAO & GEFS Day +12 PNA

A
4% | « Verification Period: 201 |-
2019, Thursdays

GEFSv12
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24 12 0 12 24 36 when the observed NAO is
amplified on Day 0

n=83
IR [ [ [ [T | Hss
24 12 0 12 24 36 -36
— - * Key Points:
*  The GEFS and merged-
MLR perform equally

-36
well when the NAO is

amplified.
Skill score improvements

are greatest over
northern Alaska and

ACONUS HSS =-0.5
AAK HSS = 2.2

central CONUS.

Statistical models have a

n=83 \ .
IR [ [ [ [ [ [T |
42 6 0 6 12 18 ~NSS
[ ]
place in forecasting!
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Conclusions

* By using blocking-related predictors, such as the NAO and PNA, we can improve
our Week 3-4 statistical models.

* Further, by hybridizing the statistical models with indices forecasted by the
dynamical models, we gain the most improvement.

* Finally, this improvement largely occurs during so-called “forecasts of opportunity”
when the relative indices are amplified. In such instances, the statistical model
performs on-par with the GEFSv|2.

* Unfortunately, positive results for precipitation have been elusive, but a few more
tests are ongoing.

* Moving forward, we will be experimentally monitoring the merged-MLR’s
performance in real-time, with the particular hope that it can provide insight into
upcoming episodes of cold during winter.
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MLR-NAO Regression Coefficients
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Trend remains constant with lead-time.
MJO and ENSO signals are large across all leads ands persist out to Week 3-4.
The large NAO signal over CONUS fades significantly by Week 3-4.

42



T4

r of Innovation

WATIONA;

MLR-PNA Regression Coefficients
Temperature
ENSO 3.4
(Days -1 to -14)
TN

Week 1-2

Week 2-3

Week 3-4

K per index

] [ I I I
0.15 030 045 060 0.75

[ U I I I . —
-0.75 -0.60 -0.45 -0.30 -0.15

43

Trend remains constant with lead-time
MJO and ENSO signals are large across all leads ands persist out to Week 3-4

The PNA signal tends to fade toward Week 3-4




