

The UFS coupled ensemble prototype experiments

Bing Fu¹, Yuejian Zhu², Hong Guan¹, Bo Yang¹, Eric Sinsky³, Xianwu Xue⁴, Jiayi Peng⁵, Philip Pegion⁶, Fanglin Yang² and Avichal Mehra²

1.Lynker at NOAA/NWS/NCEP/EMC; 2.NOAA/NWS/NCEP/EMC 3.ERT at NOAA/NWS/NCEP/CPC; 4.SAIC at NOAA/NWS/NCEP/EMC; 5. Axiom at NOAA/NWS/NCEP/EMC; 6.NOAA/ESRL/PSL

Present for S2S All hands meeting, December 2, 2022 Acknowledgements: Mike Barlage, EMC coupling and model group

Outline

- Introduction of coupled GEFS (Global Ensemble Forecast System)
- Results from 3 coupled GEFS prototypes (EP1,EP2,EP3)
 - Verification scores
 - MJO prediction
 - 2m temperature bias, tropical precipitation
- Summary

ž

औ

K

DOD

औ

R

哭

 \square

512

NORA

UFS coupled model prototypes

	UFS prototypes	Model components	Initial conditions				Highlights of undated
			ATM	OCN	ICE	WAV	Highlights of updates
	P1	C384L64-MOM6-CICE5 NEMS mediator	CFSR	CFSR	CPC ice analysis	N/A	First prototype
	P2	C384L64-MOM6-CICE5 NEMS mediator	CFSR	CPC-3Dvar	CPC ice analysis	N/A	New ocn ICs
	P3	C384L64-MOM6-CICE5 NEMS mediator	CFSR	CPC-3Dvar	CPC ice analysis	N/A	
	P4	C384L64-MOM6-CICE5-WW3 NEMS mediator	CFSR	CPC-3Dvar	CPC ice analysis	CFS forcings	CCPP, wave feedback to ocn
	P5 EP1 base	C384L64-MOM6- CICE6 -WW3 CMEPS mediator	CFSR	CPC-3Dvar	CPC ice analysis	CFS forcings	GFSv15 physics, wav-atm coupling fix, CICE6
	P6	C384 L127 -MOM6-CICE6-WW3 CMEPS mediator	CFSR	CPC-3Dvar	CPC ice analysis	CFS forcings	Fractional Grid, L127, sa-tke-EDMF
	P7 EP2 base	C384L127-MOM6-CICE6-WW3 CMEPS mediator	GEFS-RR	CPC-3Dvar	CPC ice analysis	CEFS forcings	NOAH-MP, NSST, updated physics
	P8 EP3 base	C384L127-MOM6-CICE6-WW3- GOCART CMEPS mediator	GEFS-RR	CPC-3Dvar	CPC ice analysis	GEFS forcings	Thompson MP, updated physics

NATIONAL WEATHER SERVICE

Coupled GEFS and experiments

- Coupled GEFS is UFS-based fully-coupled global ensemble forecast system
- Experiment design:
 - Period: Oct. 2017 Sept. 2019
 - 11 members, out to 35 days
 - Every Wednesday at 00UTC of initial forecast
- GEFSv12 Reforecast benchmark or reference
 - C384L64 uncoupled GFSv15/GEFSv12 configurations
 - Initial analysis and perturbations
 - GEFSv12 reanalysis (and 3D-IAU replay)
 - Stochastics
 - SKEB (0.6); SPPT-5 scales (0.8,0.4,0.2,0.08,0.04)
 - Ensemble Prototypes (EP) experiments (configurations will be showed next)
 - EP1 (p5) completed by September 2021
 - EP2 (p7) completed by March 2022
 - EP3 (p8) completed by September 2022
 - EP4 (p8 +aerosol) in plan Q2FY23
 - Challenges -
 - Initial conditions of ocean no cycling, at rest, no ocean currents; No initial perturbations for ocean and land

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 4

112

四日

ž

औ

KS

Initial Conditions (Analysis and Perturbations)

औ		EP1 (p5) (C384L64, OCN_L75) (model top at 0.2 hPa)	EP2 (p7) (C384L97,OCN_41) (model top at 0.01hPa)	EP3 (p8) (C384L97,OCN_41) (model top at 0.01hPa)
♀ 野	ATM	GFSv15 Retrospective Anl and EnKF (f06)	GFSv15 Retrospective Anl and EnKF (f06) sfc spinup (NOAH-MP)	GFSv15 Retrospective Anl and EnKF (f06) (new oro) sfc spinup (NOAH-MP) updated
	OCN	CFSR Salinity and T	CFSR Salinity and T	ORAS5 anl + pert
∆	ICE	CPC ice analysis	CPC ice analysis	CPC ice analysis
덝흲	WAV	CFSv2 wind/ice forcing	GFSv15 wind/ice forcing	GFSv15 wind/ice forcing

ž

Model Physics and Stochastics

औ		EP1 (p5) (C384L64, OCN_L75) (model top at 0.2hPa)	EP2 (p7) (C384L97,OCN_41) (model top at 0.01hPa)	EP3 (p8) (C384L97,OCN_41) (model top at 0.01hPa)	
	phy	Hybrid-EDMF Sa-SAS GFDL-MP GWD (stationary oro) NOAH-LSM 	Sa-TKE-EDMF Sa-SAS (updated) GFDL-MP GWD (stationary oro) NOAH-MP NSST	Sa-TKE-EDMF (updated) Sa-SAS (updated) Thompson-MP uGWDv0+GSL NOAH-MP (updated) NSST	
51.3 2	stoch	SPPT (0.56,0.28,0.14,0.056,0.028) SKEB (0.7)	SPPT (0.56,0.28,0.14,0.056,0.028) SKEB (0.7) CA pert_mp, radtend ocnSPPT(0.8,0.4,0.2,0.08,0.04) ePBL (0.8,0.4,0.2,0.08,0.04)	SPPT (0.6,0.3,0.15,0.06,0.03) SKEB (0.8) CA pert_mp, radtend ocnSPPT(0.8,0.4,0.2,0.08,0.04) ePBL (0.8,0.4,0.2,0.08,0.04)	

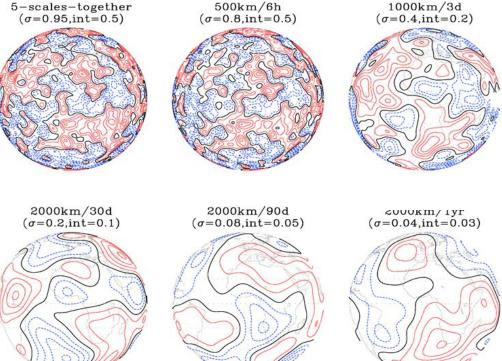
Stochastic schemes used in EP1, EP2, EP3 Examples of stochastic patterns for SPPT

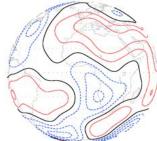
- **SKEB**: Estimate energy lost each time step and inject this energy in the resolved scales. a.k.a stochastic energy backscatter (SKEB; Berner et al. 2009)
- **SPPT**: perturb the results from the physical parameterizations (or tendency) (Palmer et al. 2009)
- CA: Cellular Automata A Stochastic Parameterization of Organized Tropical Convection (Bengtsson et al. 2021).
- Perturb MP species

ž

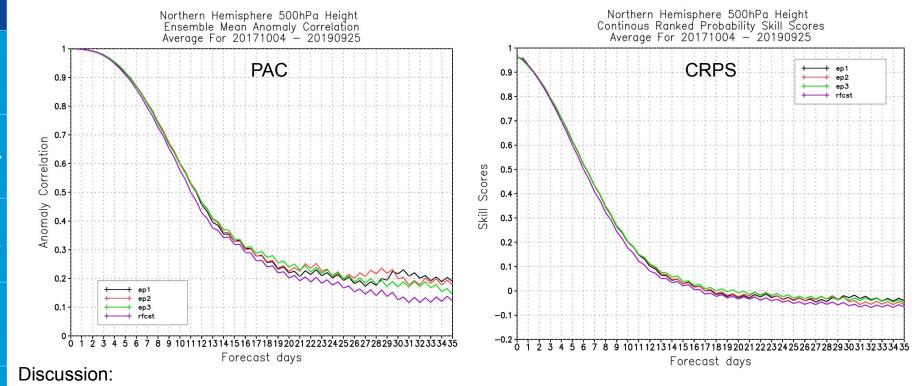
औ

KS


吧


 \square

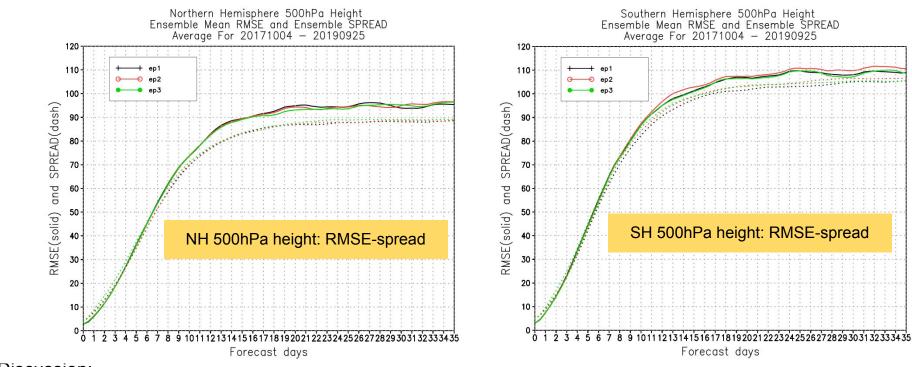
112


- Perturb Radiation tendency
- oSPPT: Perturb the ocean temperature, Salinity and thickness of ocean layer
- ePBL: Perturb the KE generation and dissipation of ocean PBL

NATIONAL WEATHER SERVICE

Performance of 500hPa geopotential height (NH: PAC/CRPS)

ž


औ

K

DOD

NATIONAL WEATHER SERVICE

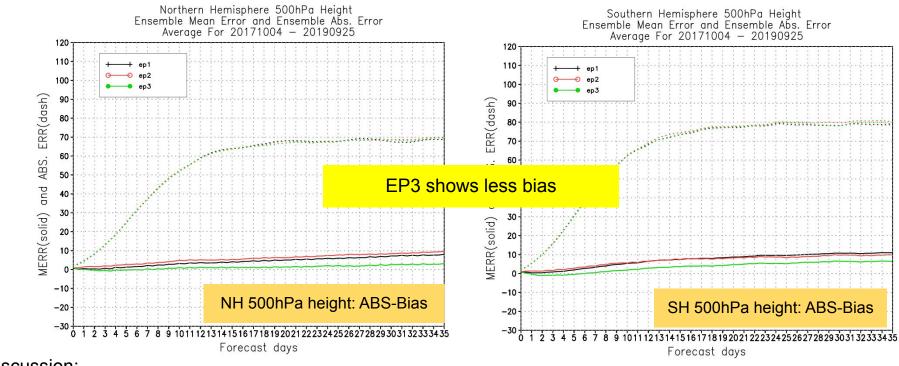
Performance of 500hPa geopotential height (NH: RMS error/spread)

Discussion:

ž

त्रौ

K


DOD

12

- There is less difference of RMS error and spread.
- In SH, EP2 shows larger RMSE after day-10. EP2 and EP3 show slightly larger spread.
- Overall, all the spreads (EP1, EP2 and EP3) are comparable.

NATIONAL WEATHER SERVICE

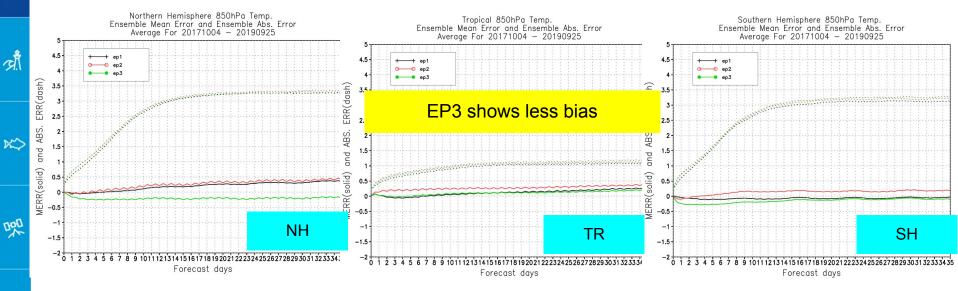
Skills of 500hPa geopotential height (bias)

Discussion:

ž

ন্দ্র

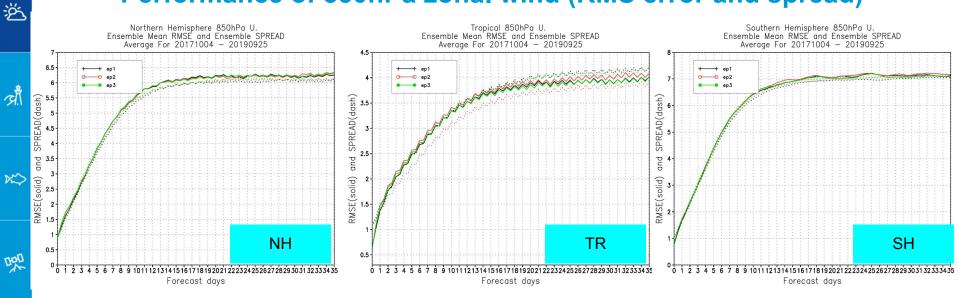
K


12

- EP3 has less bias for both hemisphere; nearly perfect for NH, much better for SH
- NH (left) 500hPa height EP2 tends to increase warm bias (possible explanation as following) for NH
 - NSST introduced a small negative bias, but NOAH-MP introduced larger warm bias.
 - Combine these two bias, it could have a net warm bias, see slides

NATIONAL WEATHER SERVICE

Skills of 850hPa temperature (bias)


Discussion:

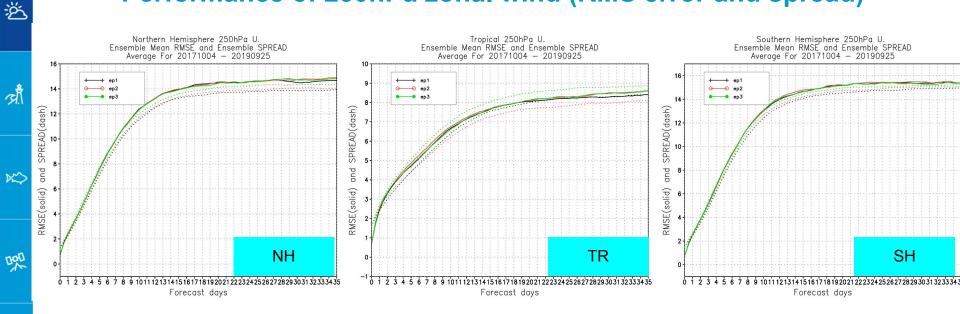
- Overall EP3 shows less bias for all the domains (except for initial adjustment)
- EP2 introduces warm bias for all three domains.

 Λ

NATIONAL WEATHER SERVICE

Performance of 850hPa zonal wind (RMS error and spread)

Discussion:

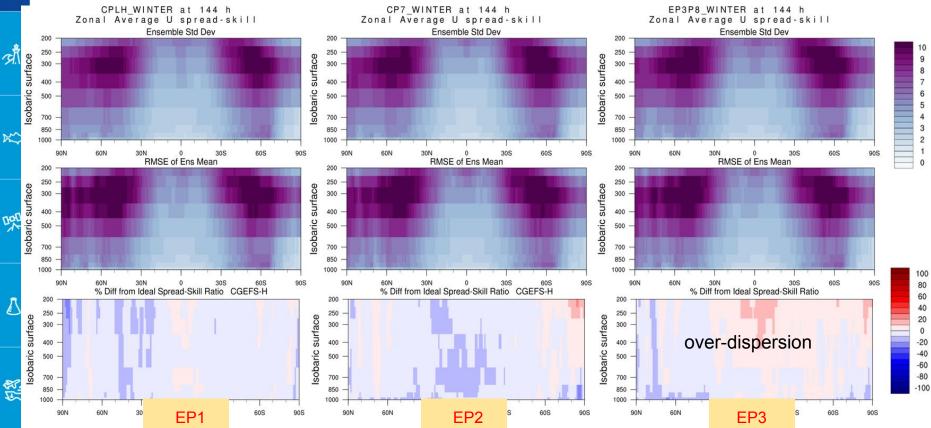

- Spread in the tropics reduced from early lead-time for EP2 (RMS error is slightly larger, but increased for EP3)
 - EP2 includes ocean stochastics (assume an impact is minor);
 - SPPT depends on forecast physical tendency, particular for tropical, without or less convection which is one of the suspects for this significant reduction.
 - P6 and P7 shows significant reduction of tropical precipitation from P5?
 - It shows less convection in GFSv16 due to model upgrade (PBL)
 - Small spread may be good, our RMS error may be overestimated (???)
 - MP scheme is changed for EP3 which may be a big impactor for tropical area

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 12

12

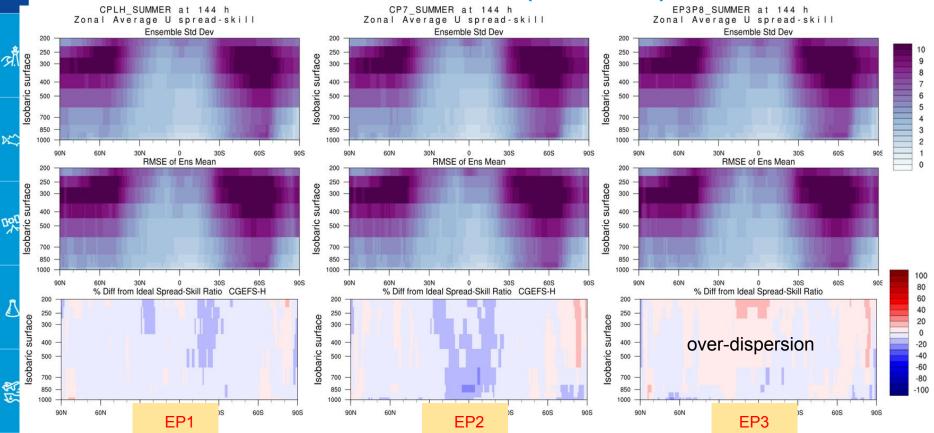
Performance of 250hPa zonal wind (RMS error and spread)


Discussion:

12

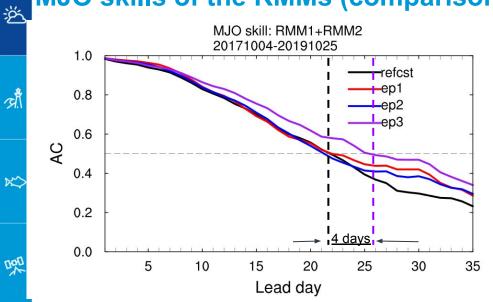
- Spread in the tropics is reduced for EP2, increased for EP3. Can we explain this?
 - EP2 includes ocean stochastics; atmospheric stochastics should be very similar.
 - EP3 increased SKEB (from 0.7 to 0.8) and SPPT (30% reduced to 25% reduced) slightly
- Ex Tropical domain has very comparable spread (Mainly SKEB's contribution)
- Does this indicate the convection may be the difference for tropical domain?
 - Both EP2 and EP3 adjust PBL scheme, EP3 use Thompson MS replacing GFDL MP (big change?)

NATIONAL WEATHER SERVICE


Vertical cross section of the RMS error - spread ratio for zonal winds Winter 6 months (144 hours)

NATIONAL WEATHER SERVICE

ž


Vertical cross section of the RMS error - spread ratio for zonal winds Summer 6 months (144 hours)

NATIONAL WEATHER SERVICE

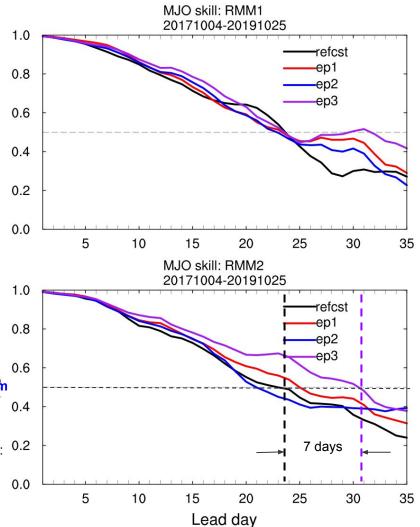
ž

MJO skills of the RMMs (comparison)

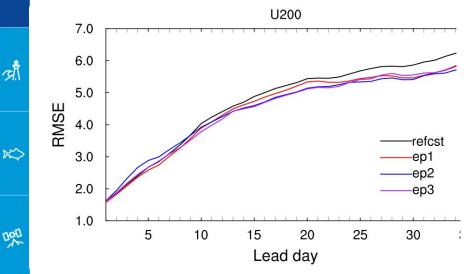
Discussion:

औ

R


四日

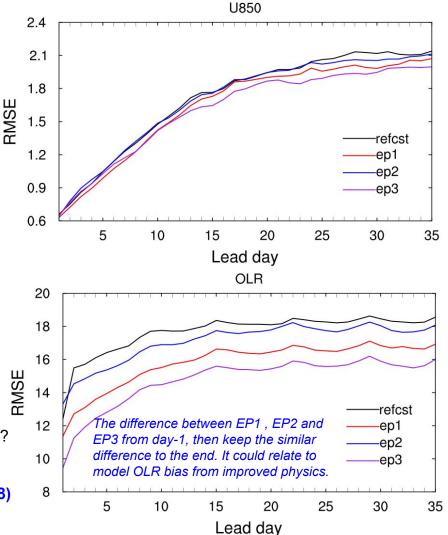
 \mathbb{A}


12

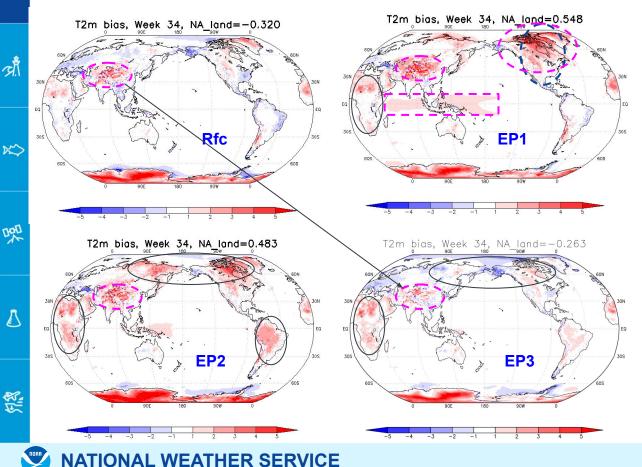
- Both model and analysis climatology NCEP/NCAR reanalysis
- Overall EP3 MJO skills are better than reforecast, EP1 and EP2. The total skill (RMM1+RMM2) reaches 26 days which is mainly from RMM2 (30+ days).
- Please note that the MJO skill for "reforecast" (or GEFS SubX version was excellent when compared to other national/international models which participated SubX project (Ref: Pegion, K., and co-authors, 2019: The Subseasonal Experiment (SubX): A multi-model subseasonal prediction experiment, Bull. Amer. Meteor. Soc. 100 2043-2060)

NATIONAL WEATHER SERVICE

RMSE of MJO related components


Discussion:

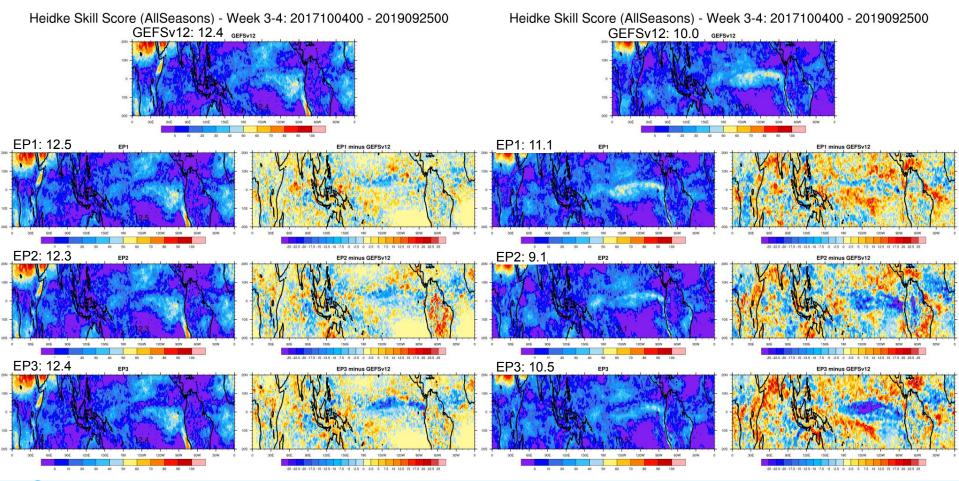
 \mathbb{A}


12

ž

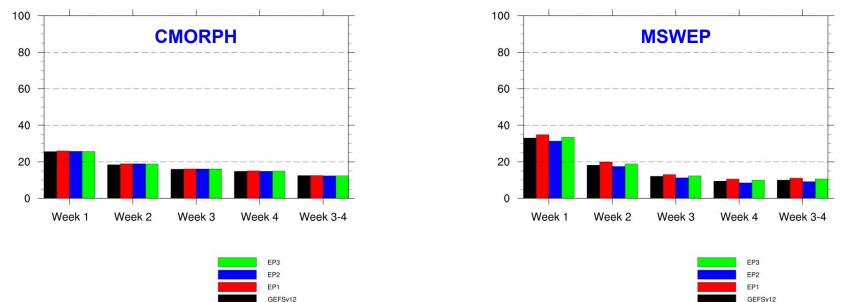
- EP2 is degraded from EP1 for all three components.
 - The degradation of zonal wind -
 - Possible from reduced ensemble spread?
 - The degradation of OLR -
 - Possible due to reduced tropical convection? (Lydia's early evaluation of P5/P6/P7)
 - EP3 has smaller RMS errors for all 3 components; especially OLR (Wei and Lydia show the similar for P8)
 - NATIONAL WEATHER SERVICE

Bias estimation of 2m temperature (Weeks 3&4)



·

- Reforecast a warm bias for central Asia.
- Coupling EP1- the warm bias for NA, and around tropical indian ocean and west central Pacific.
- Coupling EP2 similar to EP1 except the larger warm bias over South America and Southern Africa and less bias over the tropical oceans
- Coupling EP3 Overall, it is better than EP1 & EP2.
- NA land only, EP3 shows it closed to refcast, less bias than EP1 & EP2.


ž

CMORPH Global tropical Precipitation MSWEP

- CMORPH: NOAA CPC Morphing Technique
 - Link: <u>https://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html</u>
- MSWEP: Multi-Source Weighted-Ensemble Precipitation
 - Link: <u>https://gwadi.org/multi-source-weighted-ensemble-precipitation-mswep</u>

Heidke Skill Score (AllSeasons): 2017100400 - 2019092500 Heidke Skill Score (AllSeasons): 2017100400 - 2019092500

- Between two precipitation analyses (CMORPH and MSWEP)
 - All experiments have the closed scores against CMORPH
 - EP1 and EP3 show the higher scores than refcst and EP2 against MSWEP analysis for all lead-time

NATIONAL WEATHER SERVICE

Summary of Ensemble Prototype Experiments

- In most categories, coupled GEFSs (EP1, EP2 and EP3) are better than uncoupled GEFS (or GEFSv12 reforecast).
- EP1 shows very good results significantly better than uncoupled GEFS for 500 hPa height for most lead-time, and all domains
- EP2 shows less skills and larger bias compared with EP1 and EP3
- EP3 demonstrates less bias, best MJO skills and improved tropical precipitation

ž

औ

KS

DOD

