

AMS Town Hall: Jan 12, 2023

NOAA Unified Forecast System (UFS) Research to Operation (R2O) Project

Kevin Garrett¹, Yan Xue¹, Youngsun Jung¹, Aaron Poyer¹, Stephen Smith¹, Chandra Kondragunta², Maoyi Huang², Dorothy Koch²

¹NOAA/NWS/OSTI, ²NOAA/OAR/WPO

Jim Kinter¹, Vijay Tallapragada², Jeff Whitaker³

¹George Mason University, ²NOAA/NWS/EMC, ³NOAA/OAR/PSL

UFS R2O Project Leads

NOAA's Unified Forecast System Research to Operations Project (confex.com)

Panelists

K\$

员

1

阿阿

NWS Remarks

OAR **Remarks**

Program Overview

Engaging

with UFS-R2O

Dr. Stephen Smith NOAA/NWS/OSTI Director

Dr. Dorothy Koch NOAA/OAR/WPO Director

Technical

Overview

Mr. Kevin Garrett NOAA/NWS/OSTI **Modeling Program Director**

Dr. Jim Kinter George Mason University **COLA Director**

Dr. Vijay **Tallapragada** NOAA/NWS/EMC Senior Scientist

Dr. Jeff Whitaker NOAA/OAR/PSI Model and DA Chief

Dr. Yan Xue NOAA/NWS/OSTI Program Manager

Dr. Maoyi Huang NOAA/OAR/WPO **EPIC Program** Program Manager

https://vlab.noaa.gov/web/ufs-r2o

Kevin Garrett

Director, NOAA/NWS/OSTI Modeling Program

KS

What is the *UFS-R20* project? **QUFS** R20

- Transition UFS applications, components, and infrastructure into NWS operations (integrated, fully-coupled Earth system model)
- Direct partnerships with UFS community members and Earth Prediction Innovation Center (EPIC)
- Focus on high readiness-level capabilities
- Co-managed by NWS/Office of Science and Technology Integration and **OAR/Weather Program Office**

APPLICATIONS & FORECAST SYSTEMS

MRW/S2S Application SRW/CAM Application 3D-RTMA/URMA RRFS HAFS

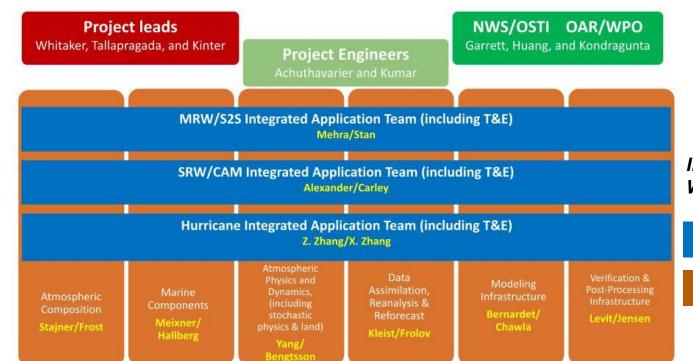
UFS

SCIENCE

Atmospheric Physics Atmospheric Composition Global Coupling Data Assimilation and R&R

INFRASTRUCTURE & TOOLS

Model Infrastructure Verification Post Processing **Code Repositories**



UFS-R20 Project Structure

Interfaces to UFS Working Groups

Application Teams

Cross-Cutting Teams

Focus and Accomplishments **QUFS** R20

Medium-range Weather/S2S

MOM6

FV₃

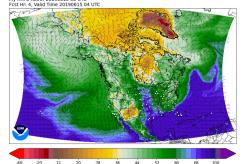
CICE6

WW3

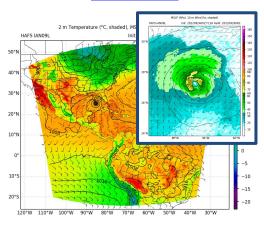
Global (Ensemble) Forecast System

6-way weakly coupled model w/aerosol via CCPP 1-deg ocean reanalysis JEDI GEFS R&R, online coupled DA GFSv17/GFFSv13 T2O

Short-range Weather


Rapid Refresh Forecast System

FV3-LAM T2O (2021) RRFS port to cloud **HWT Spring Experiment Evaluation**


RRFS improvements RRFS v1 T2O (Q2 FY24)

 Retire HRRR. HiResWs. NAM Nests. HREF

2 m Dew point temperature (F. shaded) Mv RRFS Retro: 20190615 00 UTC

Hurricane

Hurricane Analysis and Forecast System

HAFS v0.3 Configurations

- Physics/Coupling/DA/Nests HAFS Real-time parallels
- Product dissemination

HAFS Retrospective

- Evaluation
- HAFS v1 T20 (June 2023)
 - Retire HWRF/HMON

(Q4FY24)

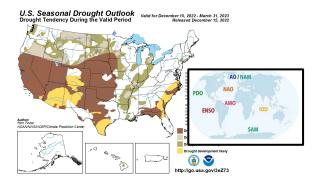
K\$

Current Project Planning **UFS** R20

- Phase II of the project starting Q3 FY23 (through 2026)
- Support multiple transitions for HAFS, RRFS, 3D-RTMA, GFS, **GEFS**
- **Prioritize activities** supporting transition of externally funded projects (Disaster suppl., JTTI, NOFOs)
- **Ensure transition of** capabilities that address forecasters feedback

Issue / request	Description of the issue / request									
		MRW/S 2S AT	SRW/C AM AT		Atm. Comp. CCT	Atm. Phy. Dyn. CCT	DA & RR CCT	Infra. CCT	Veri. & PP CCT	Marin e CCT
CAPE issues	GFS had a long-standing low bias for CAPE that was made worse with GFSv15. Initial struggles seemed to be tied to weak lapse rates aloft; v15 introduced a late-day warm-season low-level cool, dry bias that seemed to worsen the low CAPE bias. GFSv16 over-mixes the PBL in the warm season (seemingly tied to dry soil), making the low bias even worse. Low CAPE does not appear to affect frequency of convection (resolved or parameterized)	~								
Extreme heat index episodes	Extreme heat/heat index episodes underforecast by GFS in medium range.	V				abla				
Extreme heat index episodes	CAMs tend to be too cool in extreme western heat events, connected to the challenges of representing terrain-driven circulations and the marine layer		V			V				
Visibility, ceiling, clouds and fog	Prediction of onset and lifting of fog and low cloud cover associated with shallow cold air masses is a challenge. FV3 models have very little fog and low cloud cover.									
Visibility, ceiling, clouds and fog	Ceilings in CAMs (especially HRRR) during precip events drop too low. Cloud information in CAMs is too binary; need more prediction of BKN and SCT cloud cover; CAMs predict too much IFR along the west coast in summer. CAMs can struggle to varying degrees with retaining shallow, cloudy airmasses		>		~	abla				
Temperature on complex terrain	Downslopes warming and/or drying often not captured well in global models (high RH bias)	~								
Temperature on complex terrain	CAMs struggle to generate and maintain convectively-induced cold pools of the proper magnitude and spatial extent - these features are critical to storm evolution.		Y			~				

Alignment of UFS-R2O project scope to forecasters' needs




Emerging Opportunities *UFS R20

Accelerate development of a **Seasonal Forecast System**

Warn-on-Forecast System

Value-added

Space Weather

Coastal and Surge Modeling

- **Coupled DA**
- Cloud
- AI/ML
- **O2R/efficiency**
- Evaluation/ verification

UFS-R2O Technical Overview

https://vlab.noaa.gov/web/ufs-r2o

Project Leads
Jim Kinter, Vijay Tallapragada, Jeff Whitaker

K\$

Technical Approach/Guiding Principles

- Coordinated development of shared modelling and data assimilation infrastructure and algorithms (across Earth prediction enterprise)
- Open source, community accessible code with agile development

Prototyping and testing (unit, regression, and scientific tests)

Continuous evaluation of results

MRW/S2S Application Team Scope

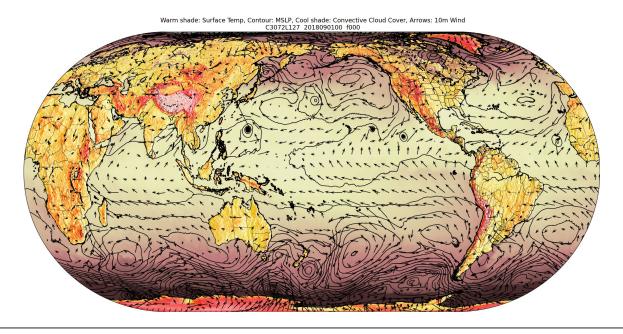
Three Applications with Global Coupled Models:

- Global Forecast System (GFSv17): deterministic medium-range forecast guidance for up to 2 weeks lead-time
- Global Ensemble Forecast System (GEFSv13): probabilistic sub-seasonal forecast guidance up to 6 weeks
- Seasonal Forecast System (SFSv1): probabilistic seasonal forecast quidance up to 1 year

K\$

Coupled UFS Prototypes 1–8

Prototype	Atmospheric Model C384 (~0.25 degree) horizontal resolution			Ocean Model Tripolar ~0.25 degree	Wave Model Regular lat/lon 0.5 degree	Ice Model Tripolar ~0.25	Mediator
	Dynamical Model	Physics Settings & Driver	Land Model	horizontal resolution	grid	degree horizontal resolution	
P1	FV3	GFSv15.2,	Noah LSM	мом6	N/A	CICE5	NEMS
P2	64 layers,	IPD driver					
P3.1	Non- Fractional grid						
P4	(model top at	GFSv15.2,			WW3		
P5	54km)	CCPP driver				CICE6 (Mushy TD not turned on)	CMEPS
P6	FV3	GFSv16				,	
Р7	127 layers, Fractional grid	Modified GFSv16	<mark>Noah-MP</mark> LSM			CICE6 (Mushy TD turned on)	
P8	(model top at 80km)	Further Modified GFSv16	Modified Noah-MP LSM	(P8+	includes on	e-way coupled a	erosols)



K\$

A Six-Way Global Coupled Unified Forecast System (UFS) -- a first for NOAA/NWS

A fully coupled UFS serves as a foundation for future operational global forecast systems at NOAA/NWS/NCEP ranging from weather to subseasonal to seasonal scales.

UFS Earth System Model Components:

- FV3 (Atmosphere)
- MOM6 (Ocean)
- CICE6 (Sea Ice)
- WW3 (Waves)
- NOAH-MP (Land)
- GOCART (Aerosols)

Animation Courtesy:

S. Moorthi and Keqin Wu, NWS/NCEP/EMC

Planned GFSv17 Implementation

GFSv17 Configuration:

- 5-way coupled system: C768L127 or C1152L127 Atmospheric Model, ¼ degree MOM6 with 75 levels, unstructured grids for WW3, CICE6, and Noah-MP
- Physics upgrades: sa*-TKE-EDMF
 PBL; Noah-MP* LSM w/ VIIRS veg
 type, modified surface layer;
 sa-convection; Thompson MP*;
 UGWD; MERRA2 Aerosol Climatology,
 IMS-NIC Ice fields;
- 3-year full resolution retrospectives prior to operational implementation

GDASv17 Configuration:

- Ensemble perturbation generation using JEDI G-LETKF
- JEDI UFO
- Scale-dependent localization
- Additional obs: NOAA20 OMOS-NP;
 NOAA21 VIIRS, OMPS-NP, OMPS-TC,
 ATMS, CrIS; MetopC GOME, GOES-18
 AMVs/ABI, Himawari AHI/AMVs,
 Sentinel-6, Metop 2nd Gen, Meteosat
 3rd Gen, GMI, saildrones etc.
- Marine JEDI (SOCA)
- Land DA using JEDI
- JEDI-3DVar-FGAT for Aerosol DA

^{* &}quot;sa" = scale-aware "Noah-MP" = Noah multi-physics "Thompson MP" = Thompson microphysics

Planned GEFSv13 Implementation

GEFSv13 Ensemble Configuration:

- 6-way coupled system: C384L127
 Atmospheric Model, ¼ degree MOM6
 with 75 levels, unstructured grids for WW3, CICE6, Noah-MP and GOCART*
- Stochastic physics in atmos, ocean and land
- Perturbations in initial conditions
- 31-member* ensemble out to 35 days*
- Weakly coupled DA
- 3-year full resolution retrospectives prior to operational implementation
- *Possible to increase ensemble size
- *Possible extension of forecast length to 48 days
- *Coupling to aerosols (GOCART) is done only for one member of GEFSv13

Reanalysis (Replay) & Reforecast:

- CPC/OWP requires 30-year reforecast data (1991-2022) for calibration and validation
- Reforecast will be initialized by a replay of UFS to ERA5 atmos. and ORAS5 ocean, CPC sea ice analysis, Noah-MP spin up, snow DA
- Every Monday and Thursday, 35 days, 11 ensemble members
- Every day, 16 days, 6 members
- To ensure a smooth transition from reforecast to operation, a test dataset of reforecasts initialized by the replay will be run and used to assess its similarity with reforecasts initialized from a prototype pre-operational weakly coupled ensemble DA system.

Hurricane Application Team Scope UFS R20

HAFS -- Hurricane Analysis and Forecast System

To create more accurate high-resolution forecast guidance for tropical cyclones across the globe.

Hurricane Integrated Application Team goals:

- Develop Hurricane Analysis and Forecast System (HAFS) based on UFS
- Finalize two configurations for implementation to replace operational HWRF and HMON in FY23

SRW/CAM Application Team Scope

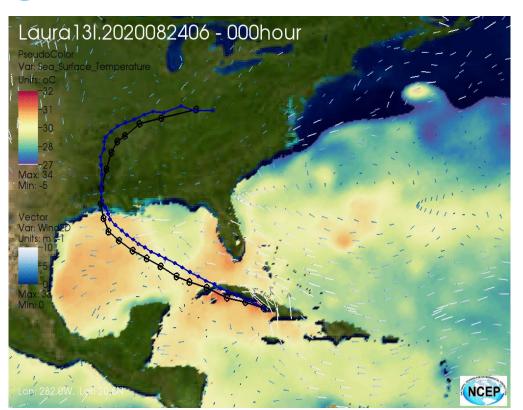
SRW/CAM -- Short-Range Weather / Convection Allowing Modeling

To create more accurate high-resolution forecast guidance using applications that span the regional domains (CONUS and OCONUS) and time scales from about nowcasting to about three days.

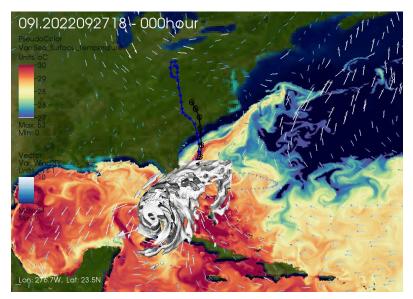
SRW/CAM encompasses three applications

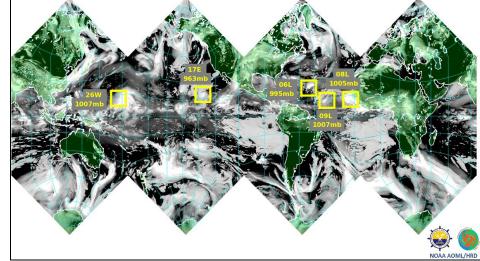
- 3-Dimensional Real Time Mesoscale Analysis (3DRTMA)
 - 15-minute 2.5-to 1.25 km analysis system
- Rapid Refresh Forecast System (RRFS)
 - Based on the FV3-Limited Area Model (LAM)*, Rapidly updated, Convection-allowing (~3 km), Hybrid EnVar assimilation (~ 36 mem), Ensemble forecasts (~9 mem), Stochastic and multiphysics suite, 18h+ hourly, 60h every 6 hours
- Warn on Forecast System (WoFS)
 - 18 member forecasts provide probabilistic output; 6-hr fcsts every 30 min (available@T+30 min); Will nest inside the RRFS ensemble

Hurricane Analysis and Forecast System **UFS** R20



HAFS Development Objectives

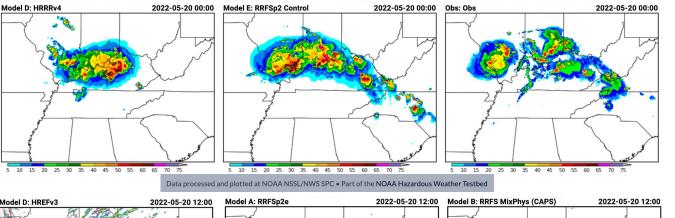

- **Use cloud resolving resolutions** within nests (static, telescopic and moving) and coupled domains
- Improve physics schemes by using observations to enhance the accuracy of coupled simulation of physical processes for TC's
- **Advance inner-core and satellite** DA algorithms for TCs; ingest new observations and adopt advanced **DA** algorithms


Future Evolution of HAFS Configurations **UFS** R20

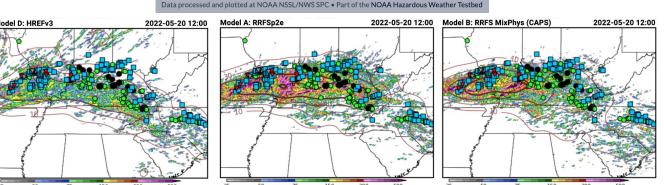
Current: HAFS single storm-centric configuration targeted for operational implementation in FY23

Future: Merged GFS-HAFS with multiple moving high resolution nests following multiple storms embedded in a global domain

KS


TIN THE

CAM/SRW Application Team

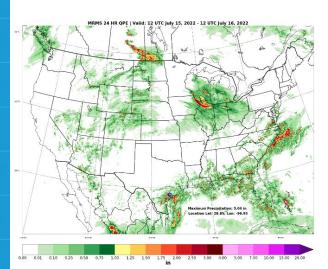


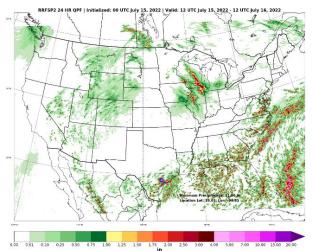
Hazardous Weather Testbed Spring Forecast Experiment Demonstration 19 May 2022 RRFS Prototype Deterministic and Ensemble Forecasts

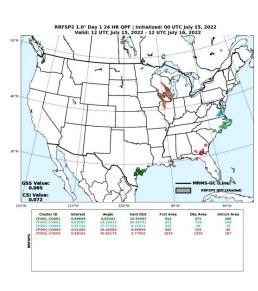
24 hr Deterministic Reflectivity Forecasts Valid 00 UTC 20 May 2022

HRRRv4 Operational Baseline (left) RRFSp2 Experimental Prototype (center) MRMS Truth Observations (right)

36 hr Ensemble Probability Updraft Helicity Forecasts Valid 12 UTC 20 May 2022


HREFv3 Operational Baseline (left)
RRFSp2 Experimental Prototype (center)
RRFSp3 Experimental Prototype (right)
Severe Storm Report Observations
(Red Triangle = Tornado,
Blue Square = Wind,
Green Circle = Hail)




WPC Hydrometeorological Testbed Flash Flood and Intense Rainfall Experiment 2022 15 July 2022 RRFS Prototype Deterministic QPF

MRMS 24hr QPE RRFS 24hr QPF MODE 1" Objects

https://origin.wpc.ncep.noaa.gov/hmt/hmt_webpages/mode/ffair/ffairmode2022.php

Engaging with the UFS-R2O Project

Yan Xue¹, Maoyi Huang²
¹NOAA/NWS/OSTI, ²NOAA/OAR/WPO

UFS R20 Website: At Your Service! **UFS** R20

- Project structure
 - **Application Teams**
 - Cross-cutting Teams
- Project scope and deliverables
- Data products and prototypes
- **UFS R2O Town Hall**
- **UFS R2O Annual meeting**
- Contact information

How to Collaborate with the UFS-R2O Team? **UFS** R2O

Get support from Notice of Funding Opportunity (NOFO)

- WPO/JTTI
- **WPO/EPIC**
- WPO/S2S
- **USWRP Testbed program**
- **OSTI/Modeling Program** (HFIP, NGGPS, Weeks 3-4)

Contribute to UFS Weather Model Github (Open Source) https://github.com/ufs-community/ ufs-weather-model

Share science ideas and explore collaboration with the UFS-R2O Team

- **Application Teams**
 - MRW/S2S
 - RRFS/3DRTMA/WoF
 - **HAFS**
- **Cross-Cutting Teams**
 - **Atmospheric Composition**
 - **Marine Component**
 - Physics/Dynamics/Land
 - **Data Assimilation, Reanalysis &** Reforecast
 - **Modeling Infrastructure**
 - **Verification & Post-processing**

*

郊

UFS Community Site: At Your Service!

https://ufscommunity.org

- UFS code and governance
- UFS Teams & Working Groups
- Community news
- Archived newsletters videos, etc.
- UFS Webinars
- Weeks 3-4/S2S
 Webinar

Town Hall of Unified Forecast
System Modeling Forum
Jan 10, Tues, 6:00-7:15PM MST

Application Teams

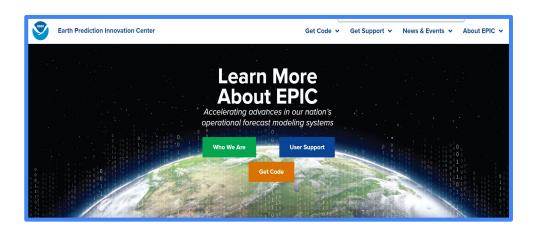
- Medium-Range Weather (MRW)
- Sub-seasonal to Seasonal (S2S)
- Hurricane
- Short-Range Weather/Convection Allowing Model (SRW/CAM)
- Space Weather
- Coastal
- Air Quality

• Cross-Cutting Teams

- Verification and Validation (V&V)
- Systems Architecture and Infrastructure
- Communications and Outreach (C&O)
- Release Coordination

Component Working Group Teams

- Aerosols and Atmospheric Composition
- Data Assimilation (DA) and Ensembles
- Dynamics & Nesting
- Land
- Post Processing (PP)
- Physics
- Marine



KS

THE THE

EPIC Community Portal and UFS User Support

Town Hall of The NOAA Earth Prediction **Innovation Center Program** Jan 10, Tues, 12:15-1:15PM MST

- Quarterly code sprints and hackathons:
- 2nd Unifying Innovations in **Forecasting Capabilities** Workshop, Jul 24-28, 2023, **Boulder, CO**
- Release additional UFS capabilities: RRFS-on-cloud, Land-DA, UFS Use Cases;
- Incorporate support for fire weather, S2S and coastal applications;

K\$

THE STATE OF THE S

Why UFS?

- UFS is already in operations;
- There is a clear, steadily-supported R2O path, so using UFS for research can impact operations;
- NOAA is all-in on UFS for forecasting.

Questions?

- UFS-R2O Project: https://vlab.noaa.gov/web/ufs-r2o
 - Kevin Garrett (NWS OSTI) <u>kevin.garrett@noaa.gov</u>
 - Yan Xue (NWS OSTI) <u>van.xue@noaa.gov</u>
 - Chandra Kondragunta (OAR WPO) <u>chandra.kondragunta@noaa.gov</u>
 - Maoyi Huang (OAR WPO) <u>maoyi.huang@noaa.gov</u>
 - Vijay Tallapragada (NWS EMC) vijay.tallapragada@noaa.gov
 - Jeff Whitaker (OAR PSL) jeff.whitaker@noaa.gov
 - Jim Kinter (GMU) <u>ikinter@qmu.edu</u>

Backup

NORA

UFS S2S Application Team (AT)

https://vlab.noaa.gov/web/ufs-r2o/ufs-s2s-applications-team

UFS S2S AT Co-Leads

Cristiana Stan, GMU; Fanglin Yang, NWS/EMC; Lucas Harris, OAR/GFDL; Wanqiu Wang, NWS/CPC

S2S AT - Goals

- Collect and prioritize forecast objectives working with NWS forecasters and model users in general
- Establish scientific goals for the model development and ensure that they meet the NWS forecast priorities
- Promote or conduct model evaluations and comparisons in order to stay abreast on model performance and deficiencies

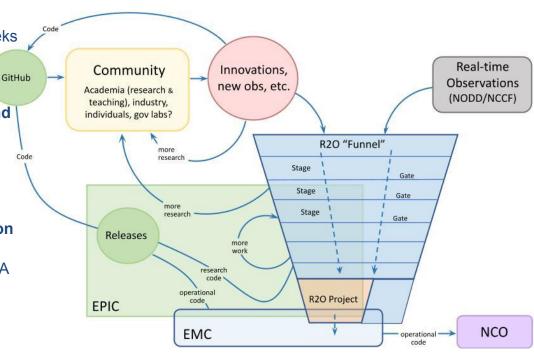
UFS S2S AT All-Hands Monthly Meetings

- Model Evaluation on S2S Time Scales including prediction skill of the UFS and other models
- New diagnostics designed to advance the understanding of Earth system variability in the S2S timescale
- Identify projects that can be spun up to fill the gap in the model evaluation
- Meeting format will be informal presentations and discussions
- Sign-up link

UFS Coupled model prototype data sets are available on the <u>AWS S3 Bucket</u> for community access. Community volunteers are invited for model evaluations, diagnosis and comparisons with other models.

Investing in the Future

NOAA Programs that Support UFS


NWS/OSTI Modeling Programs: NGGPS, Weeks 3&4, HFIP

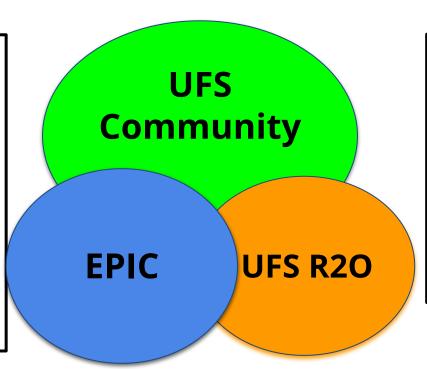
OAR/WPO Programs: EPIC, JTTI, S2S, **Atmospheric Composition**

Disaster Supplementals FY18, FY19, FY22 and **Bipartisan Infrastructure Legislation FY22**

UFS Research-to-Operations (UFS R20) Project

- Three year project (FY20-23) with 5-year vision
- Developing the next-generation global and regional forecast systems and transition to NOAA operations in FY23 and beyond
- Jointly supported by NOAA NWS and OAR
- Community team (NOAA, NCAR, JCSDA, Academia)
- Website: https://vlab.noaa.gov/web/ufs-r2o

当


K\$

阿黎

UFS Community

EPIC:

- Nurture an inclusive and diverse UFS community
- Develop a publicly accessible end-to-end testing and development environment
- Bring innovations to improve UFS performance

UFS-R20:

- Applications teams
- Cross-cutting teams
- NOAA-supported grants
- Inter-agency partnerships (ICAMS, JCSDA, etc)
- Responsive to forecast priorities
- Transition plans

K\$

员

Medium-Range Weather (MRW)/Subseasonal-to-Seasonal (S2S) Applications:

Global Forecast System (GFS v17); Global Ensemble Forecast System (GEFS v13)

Rapid-Refresh Ensemble Forecast System (RRFS v1); Three-Dimensional Real-Time Mesoscale Analysis (3DRTMA); Hurricane Analysis and Forecast System (HAFS v1)

- Data Assimilation (DA):
 - Coupled: Allow observations of one component (e.g. atmosphere) to update all components.
 - Community JEDI for initialization of all forecast systems
 - Advanced ensemble, hybrid and 4D-Var algorithms, enhanced use of satellite radiances.
- Physics: Next-gen moist physics suite unified from convective-allowing to global
- Atmospheric Composition: high-resolution inline air quality prediction and direct aerosol feedback
- Hurricane Analysis & Forecast System (HAFS) with multiple moving nests

Future Plans

- Development & simulation
- Model evaluation
- Increase forecaster engagement:
 - Model developments driven by forecaster needs
 - Partners on code retirement plans and process
- Phase II (2024-2025):
 - Transition first generation UFS applications to operations
 - Strengthen bridge from research to operations

Gaps and Needs of UFS R2O **UFS** R2O

Diagnosing and understanding of model biases

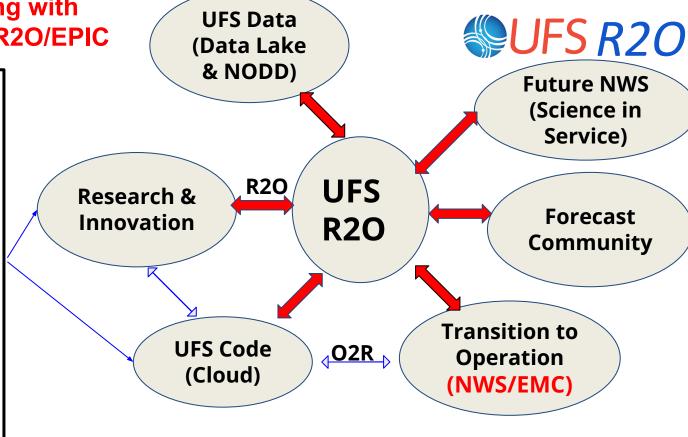
Reducing model biases

Improving representation of model uncertainty in ensemble capability

Improving data assimilation and use of observation

Aligning R&D efforts to address forecaster needs

Accelerating transition of R&D into operations



EPIC:

- Public Release
- Cloud environment
- User support
- Code Springs & Training
- 2nd Unifying Innovations in Forecasting Capabilities Workshop (summer 2023)
- Student support
- Fire weather, S2S and coastal app.

https://github.com/ufs-community/ufs-weather-model

- For specific interests contact Application Team and Development Cross Cutting Team Leads
- For sustained collaborations with the UFS R2O Project on the <u>developing</u> systems, partners are encouraged to contribute to UFS development code on Github

https://github.com/ufs-community/ufs-weather-model

 For support on public released codes, please go to the EPIC Community Portal

Upcoming EPIC Events and Opportunities

- Quarterly code sprints and hackathons:
- Establish a Community Modeling Board:
- **EPIC Symposium & Student Workshop** at AMS:
- 2nd Unifying Innovations in Forecasting Capabilities Workshop;
- Release additional UFS capabilities: RRFS-on-cloud, Land-DA, UFS Use Cases;
- Incorporate support for fire weather, MRW/S2S/HAFS/coastal applications;

Tightly-coupled NOAA and Community Modeling Boards

Aligning Priorities with Operational Prediction Goals and Modeling-system Investments

NOAA **Modelina Team** NOAA, Federal, and International Coordination

Forecast System

The CMB will provide oversight to the UFS and will represent community perspectives and priorities

Process, Budget, Communications, and Legislative Affairs

Powered by EPIC

Date: July 24th - 28th

Location:

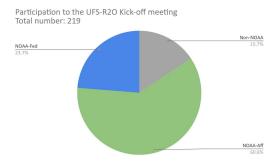
Center Green, Boulder, CO

K\$

Path Forward

- Engagement on software, infrastructure and user support
- Community support (enhanced by EPIC)
 - Support multiple compute-platforms and community collaborators
- Organization
 - Coordinate across multiple institutions using contemporary software management and communication tools; integrate other funded NOAA projects
- Make model output available to the community
 - NOAA Data Lake & NOAA Open Data Dissemination (NODD)

UFS-R2O Project History



- Winter 2019-2020:
 - Proposal invited (2-year project)
 - Project team and proposal assembled
- March 12-13, 2020: Face-to-face peer-review
- **April-May 2020**: Funding finalized
 - \$13M/yr: NWS-OSTI \$10M and OAR-EPIC & JTTI \$3M
- July 2020: Project launch, Kick-off meeting (July 9-10), 200+ attended
- October 2020: First Quarterly Program Review
- July 2021: Year 2 kick off
- July 2021: First Annual Meeting
- **December 2021:** Year 3 extension review

Near and Future Plans for Physics/Dynamics Development

Phase-two overarching goals:

- Address systematic biases found in GFSv17/GEFSv13/HAFS/RRFS prototype simulations related to physical process descriptions.
- Seek improvements for low frequency phenomena in extended forecasts related to physical process descriptions.
- Continue to unify physical process descriptions across applications to the extent feasible.
- Continue development of scale-adaptive and unified process descriptions.
 - Optimize physics for the sub 10km range in global simulations.
 - Develop a unified prognostic cloud fraction scheme that connects microphysics, convection and planetary turbulent processes.
- Continue development of process level stochastic physics, ensuring conservation of energy and moisture, and consistency in perturbations across component interfaces.
- Address physics-dynamics interface issues, time-step sensitivity in physics, diffusion property impact on near grid-scale phenomena, numerical solutions in physics leading to unphysical solutions (e.g. negative tracers).
- Continue testing and evaluation of current prototype systems and new physics innovation in land and atmosphere processes using process level diagnostics and hierarchical test framework.

Stretched goals

- Research physics innovations needed for sub 1 km range in turbulence and shallow convection.
- Include aerosol-microphysics-radiation interaction in short and medium-range weather forecast models
- Apply neural network based correction to the state variables for machine learned in-line bias correction.

Physics for MRW/S2S Applications

	GFS.v16	UFS	120
Cumulus Convection (Shallow & Deep)	sa-SAS	Positive definite mass flux; stochastic convective organization; Improved CAPE	
Surface Layer	GFS	Sea spray; optimization	Updated
PBL	sa-TKE-EDMF	Positive definite tracer advection; optimization	
Non-orographic GWD	uGWP v0	uGWP.v1 (Yudin et al., 2021)	
Orographic Gravity Wave Drag	Kim & Arakawa (1995)	uGWP.v1 Kim and Doyle (2005)	
Small-scale gravity-wave drag (new) Turbulence Form drag (new)		Tsiringakis et al. (2017) Beljaars et al. (2004)	
Small-scale gravity-wave drag (new)	Noah LSM	Tsiringakis et al. (2017)	
Small-scale gravity-wave drag (new) Turbulence Form drag (new)		Tsiringakis et al. (2017) Beljaars et al. (2004)	New

Physics for MRW/S2S Applications (cont'd)

	GFS.v16	UFS
Microphysics	GFDL MP	 Thompson MP improve computational stability (inner-loop), optimize cloud cover and radiative fluxes use Semi-Lagrangian sedimentation for rain and graupel develop cloud-aerosol interaction scheme
Radiation (LW &SW)	RRTMG	RRTMGp (pending on improvement in computational efficiency)
Ice climatology	CFSR (model)	IMS-NIC (observation & retrievals)
land/sea/lake masks	MODIS	VIIRS

Some of the schemes have also been tested and evaluated in RRFS and HAFS for physics unification.

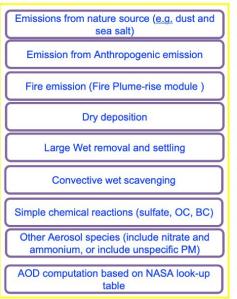
New

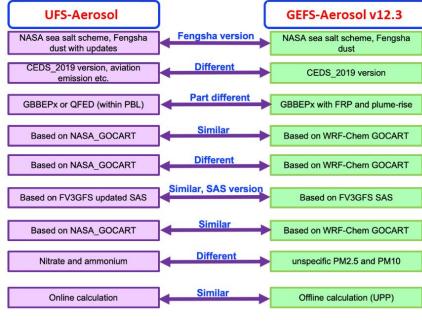
割

郊

K\$

员


NOAA's next-generation global aerosol forecast: UFS-Aerosol



UFS-Aerosol = Prognostic aerosol component of UFS 6-way coupled system developed within UFS R2O Program as a prototype for global subseasonal prediction targeted for GEFSv13

Expected benefits:

- Improved aerosol process descriptions
- Realistic aerosol spatial distributions and temporal variability
- Realistic representation of aerosol radiative impacts on meteorology
- Solid foundation for NOAA's next-generation operational S2S forecast system

K\$

员

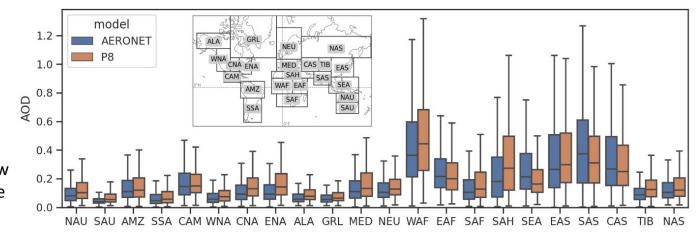
Overview of UFS-Aerosol Development

Planning

- Concept of operations
- Evaluation plan

Processes

- Improved dust treatment
- Convective wet scavenging
- Aerosol precipitation flux
- Aerosol-radiation interactions

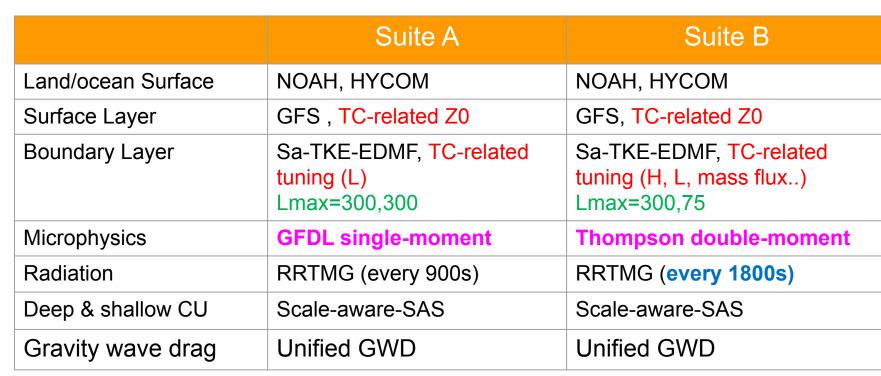

Evaluation

- Aerosol spatial/temporal distributions, speciation, size, optical properties
- Impacts of aerosol-radiative interactions on meteorology

Architecture

- NUOPC-compliant
- Latest GOCART version on NASA repository
- Coupled to UFS atmospheric component
- UFS global workflow extended to include aerosols

Regional comparisons of P8 Weeks 1-4 UFS-Aerosol to AERONET Total AOD


Analysis by Jian He, Zach Moon, and Barry Baker

Physics for HAFS.v1

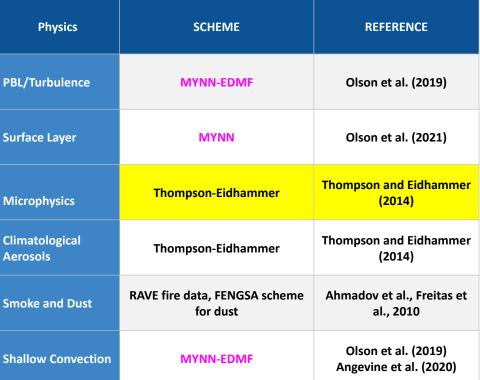
K\$

司

郊

K\$

赆


阿阿

X

Physics for RRFS.v1

Gravity Wave Physics	Small Scale and Turbulent Orographic Gravity-Wave & Form Drag	Beljaars et al. (2004) Tsiringakis et al. (2017) Toy et al. (2021)	
Land Model	RUC> Noah-MP	Niu et al. (2011)	
Large Lakes	FVCOM	Fujisaki-Manome et al. (2020)	
Small Lakes	FLake/CLM Lake	Mironov (2008)/Subin et al. (2012), Mallard et al. (2015)	
Near-Surface Sea Temperature	NSST	Fairall et al. (1996), Derber and Li (2018)	
Long and Short Wave Radiation	RRTMG	lacono et al. (2008), Mlawer (1997)	

K\$

Primary HAFS IOC Configurations

HAFSv1.0	Domain*	Resolution*	DA/VI	Ocean/Wave Coupling	Physics	Basins
Config. 1 (HAFS-A)	Storm-centric with one moving nest, parent: ~81x81 degree, nest: ~12x12 degree	Regional (regular Gnomonic), ~6/2 km, ~L81, ~2 hPa model top	VI and DA	Two-way HYCOM, one-way WW3 coupling for NHC AOR	Physics suite-1	All global Basins NHC/CPHC/JTWC Max 7 Storms Replace HWRF
Config. 2 (HAFS-S)	Storm-centric with one moving nest, parent: ~81x81 degree, nest: ~12x12 degree	Regional (ESG), ~6/2 km, ~L81, ~2 hPa model top	Adaptive VI and/or DA	Two-way HYCOM No Wave *Subject to change based	Physics suite-2 on T&E and avai	NHC/CPHC Max 5 Storms Replace HMON lable computer resources

Primary configuration (HAFS v0.3A), storm- centric with moving nest in all global oceanic basins.

Secondary configuration (HAFS v0.3S) uses alternate physics in NHC/CPHC basins.