Severe Hazards Analysis and Verification Experiment (SHAVE)

Kiel Ortega – project lead Travis Smith OU/CIMMS NOAA/NSSL

Why SHAVE?

- Verification of gridded, high resolution, multi-radar, multi-sensor hail products
 - Need verification data at similar scale of products
 - Storm Data
 - Scale is similar to NWS warnings (~1 per county, per hour)
 - Hail products at 1 km, up to 1 min resolution
- Non-severe and null reports are important for verification
 - √ Not available through Storm Data

New Tools and Integrations

2006 introduced several new tools and integrations

Warning Decision Support

System—Integrated Information

(WDSS-II)

GIS Integration

- ▼ GIS information in Google Earth™
 - **Geo-based phone number listings**
 - Add info from outside sources (Delorme, plat maps)
- Georeferenced images from WDSS-II

SHAVE Goals

Goals

- High resolution reports
 - Including non-severe and null
- Verification of gridded severe weather products
 - Multi-radar, multi-sensor hail and rotation products
 - Gridded flash flood guidance
- ∀ Verification of new radar technologies (PAR, dual-pol)
- Y Hazardous Weather Testbed/Experimental Warning Program support
- Future warnings very specific need very specific verification!
- Severe weather threats
 - ∀ Hail
 - Wind damage
 - ∀ Flash flooding

SHAVE Goals: Hail

- Focus on the beginnings of hail swaths
 - 7 Product lead times
 - No hail boundaries important
- Accurate hail estimates
 - 7 ±0.25 in
- Maximum and most common hail size
- Measurements (if available)

SHAVE Goals: Wind

- Most freeform verification
 - Looking for wind damage
 - Add-on to hail questions
- Focused wind damage calls
 - ∀ Next day
 - 7 Obvious wind storms
- Details, details, details
 - ▼ Tree snapped—what kind?
 - Was the tree dead or still living?
 - What was the shed made out of?

SHAVE Goals: Flash Flooding

- Evaluate gridded flash flood guidance grids
- Detailed information
 - 7 Flooded area
 - Field, street, etc.
 - 7 Flooding depth
 - 7 Lateral extent
 - ∀ Moving or standing?
 - ∀ Flooding frequency

SHAVE Data Summary

Summary

- 243 days of operations
- 95413 phone calls
- 32039 data points

<u>Hail</u>

- **7** 23720 total
- 9692 'no hail'
- ▼ 6191 non-severe hail
- 7 6956 severe* hail
- 524 significant-severe hail

<u>Wind</u>

- 7 2479 total
- **7** 735 'no wind'

Flash flooding

- ₹ 5840 total
- 7 4165 'no flooding'

SHAVE Data Coverage (2006-2009)

How SHAVE works

Delorme Street Atlas Plus

Y Phone number data base

Google Maps interface for data entry

Day-to-day ops: Student-led, student-run

7 students ended up in year-round positions

Data Entry

SHAVE effects on NWS?

Not just a data collection project

- SHAVE scientists also lead data analysis projects
- SHAVE students usually undertake these projects
- All reports
 - Hazard grids for warning verification
- Y Hail
 - Three body-scatter spike evaluation
 - **Reflectivity height investigation**
- Wind
 - Storm signatures leading to severe winds
- Flash flooding
 - Investigating the information collected
 - What is "severe" flooding?
 - Gridded flash flood guidance

Storm Data compared to SHAVE: Hail reports

Reflectivity Heights

- No hail boundaries
 - Allows for a complete investigation of lead times
- Highlight for the "up to 15 min"-lead time graph
 - Approx. lines for hail thresholds for the height of the 50 dBZ echo above -20°C compared to the height of -20°C

Tech Transfer of SHAVE?

- "Monkey see, monkey do" already happening
 - Some NWSFOs are already using enhanced GIS and phone datasets to call individual citizens or businesses for verification.
- Independent high-resolution high density
 - Much more difficult, but required to improve future warnings
 - Requires a "verification office" independent of any specific NWSFO
 - Support the inevitable paradigm shift in warnings to the public: warn-on-forecast; probabilistic hazard information; translating warning polygons

The path to Warnon-Forecast

Probabilistic Hazard Information (PHI) is coming

- initially based on multi-sensor / multi-radar analysis and data mining for entire WSR-88D era (1995-now)
- storm-scale model ensemble
- First WoF test Spring 2010:
- Real-time assimilation @ 1km
 w/ 5-min updates (3DVAR)

Thank you and Questions?

Project Scientists

J. J. Gourley, Kevin Manross, Kiel Ortega, Kevin Scharfenberg, Travis Smith, Arthur Witt

Student callers

- Chad Echols, Angelyn Kolodziej, Chip Legett, James Miller, Christa Riley, Rachael Sigler
- Steve Irwin, Brett Roberts
- Jenifer Bowen, Jessica Erlingis, Margaret Frey, Tiffany Meyer, Kelsey Mulder
- Y Lamont Bain, Erika Kohler, Cory Mottice, Nicole Ramsey, Brandon Smith
- Bethany Hardzinski, Abe Frei-Pearson, Bryan Salsieder, Brian Squitieri, Brandon Wesbury

Collaborators

Don Burgess, Greg Stumpf, Patrick Marsh

