

Hazard Services-Probabilistic Hazard Information (HS-PHI)

VLAB FORUM (SEPTEMBER 2017)

Greg Stumpf
CIMMS / NWS-MDL, Norman, OK
Tracy L. Hansen
ESRL / GSD, Boulder, CO

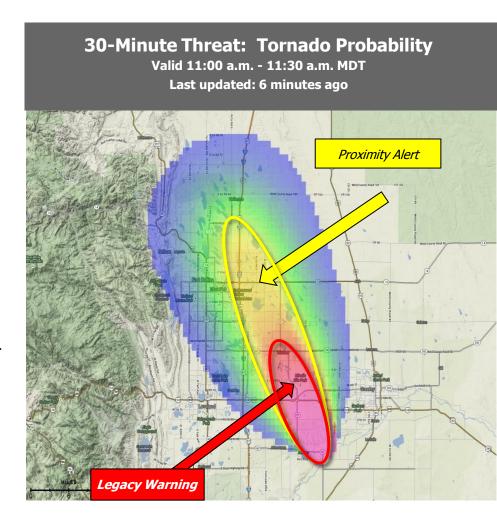
With: Alyssa Bates, Chris Golden, Yujun Guo, Joe James, Jim LaDue, Chen Ling, Kevin Manross, Tiffany Meyer

Outline

- Background
- USWRP Grant
- Team Composition
- Development Process
- Hazardous Weather Testbed Experiment
- Preliminary Findings
- Looking ahead

BACKGROUND: FACETs and PHI

- Forecasting A Continuum of Environmental Threats
 - A next-generation severe weather watch and warning framework that is modern, flexible, and designed to communicate clear and simple hazardous weather information to serve the public.
- Probabilistic Hazard Information (PHI)
 - Rapidly-updating probabilistic hazard grids.
 - PHI can be used to provide custom user-specific products that can be tailored to adapt to a variety of needs – for example, providing longer lead times, at lower confidence, for more vulnerable populations with a lower tolerance for risk.

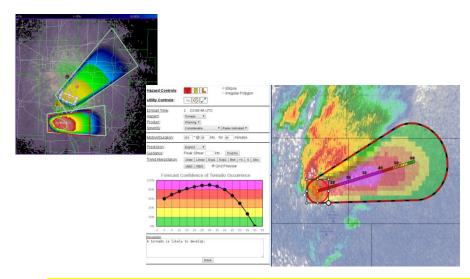

Adaptive warnings from PHI

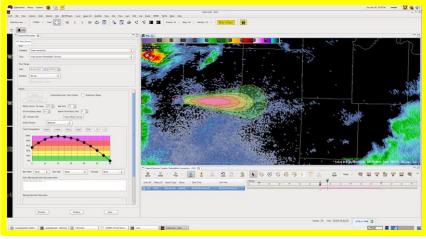
Evolution from product-centric to information-centric paradigm:

Probabilistic Hazard Information (PHI): forecasters convey threat probability on grids using a new threat management tool.

Legacy products (warnings/watches) result from pre-determined thresholds applied to binary decision-making.

Opens the door for new products and services – such as low-probability longer lead time warnings for high risk users who have greater tolerance to high false alarm ratios.

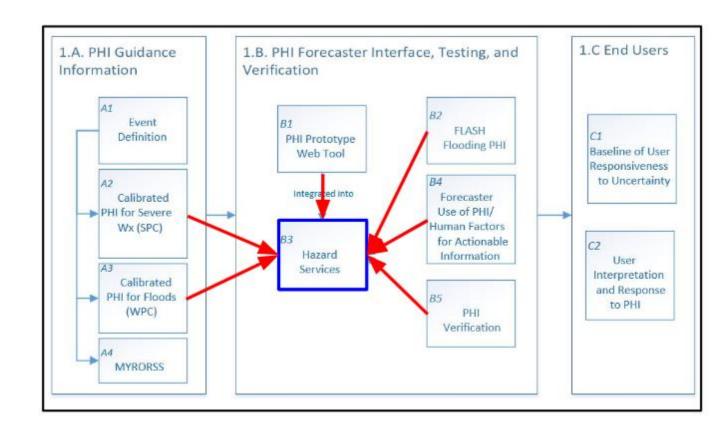




PHI Evaluation History in the Hazardous Weather Testbed (HWT)

PHI Tool Evolution:

- First NSSL PHI prototype tests using Warning Decision Support System II (WDSSII), tested in 2007, 2008.
- Second modern NSSL PHI Prototype using a web browser-based design, tested in 2014, 2015, 2016.
 - Look and feel based on AWIPS2 Hazard Services
 - Integrated user component with Emergency Managers and TV broadcasters using the Enhanced Data Display (EDD) to display custom products derived from PHI.
- USWRP Grant: Developed initial capability in AWIPS2 experimental Hazard Services – PHI (HS-PHI) using PHI Prototype as a guide, first tested in 2016.



USWRP Grant: Probability Of What? (POW)

RL6 by end of Year 3 (1 June 2018)

Operational readiness will follow

Cross-Organizational Team

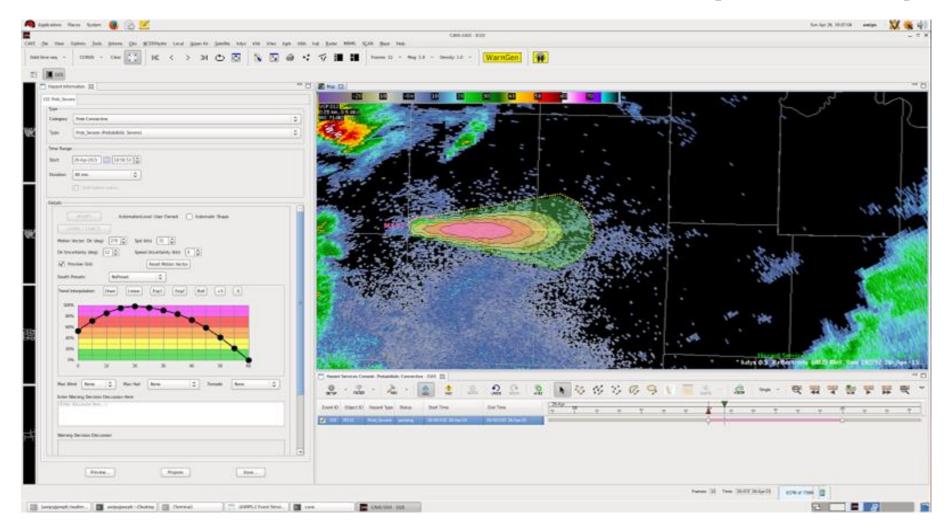
- MDL -- Experimental Design coordinator, Product Owner writing Functional Tests and prioritizing tasks. Conduit between PHI Prototype and PHI into Hazard Services / AWIPS / Operations. PHI visionary.
- GSD -- Software design and development, integration with AWIPS, Hazard Services concepts, and VLab.
- **Forecasters** -- Trying new paradigm, input from operation perspective, feedback on improving software, concepts, and process, O2R
- NSSL -- FACETs concept and collaborations, IT support, Hazardous Weather Testbed facility, overall management of the grant / funding, future funding
- WDTD -- Development of the Training including future operational use and best practices
- University of Akron -- Human Factors

Year 2 Process (2016-2017)

- Throughout:
 - Weekly Design and Planning meetings with entire team
 - Development and Testing at GSD
 - Use of Virtual Lab Development Services
- May: Set up single machine Test Environment at GSD
- Sept: Set up dual machine Test Environment at GSD

Major shift in Team dynamics and progress:

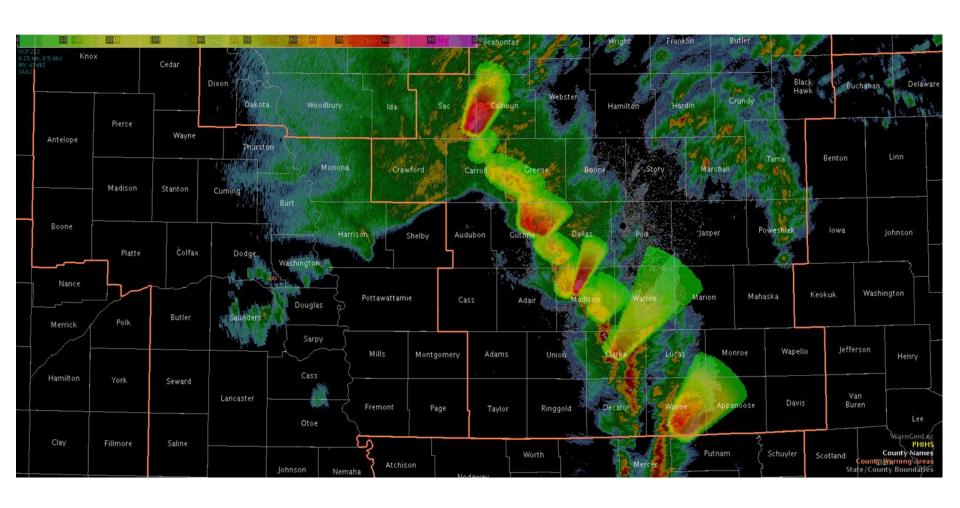
- Oct-Feb: Coding and Testing against Detailed Functional Tests using WebEx so developers could watch HWT in action
- Mar-April: HWT with continued improvements in off weeks


HS-PHI software developments in Year 2

- The 2015 version of NSSL PHI Prototype was the Year 2 benchmark.
- New functionality added for Year 2:
 - Convective Recommender
 - Processes ProbSevere detections into Hazard Services PHI objects.
 - Workflow for editing objects including adjusting of the motion vector
 - Levels of Automation
 - Forecasters can create manual objects.
 - Forecasters can assume partial or full control of automated objects.
 - New object drawing tools: ellipses, rotation, resizing
 - Ending objects
 - PHI output grids
 - Warning Decision Discussion (timestamped entries)

Slide 9

PHI in AWIPS2/Hazard Services (HS-PHI)



PHI Output Grids in AWIPS2

HS-PHI HWT Experiment Objectives

Technology: Evaluate HS-PHI components and performance so that the software can be improved before operational implementation.

Human Factors: Measure forecaster workload using HS-PHI, including ease of use and graphical design.

Methodology: Assess how forecasters adopt and evolve their current warning methodology into the HS-PHI environment, including evaluating the humanmachine mix with automated ProbSevere guidance.

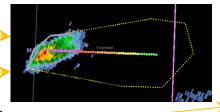
Conceptology: Collect and analyze data on forecasters' thoughts on the paradigm change from deterministic warning products to probabilistic hazard information.

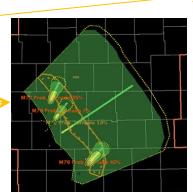
(TIM)"

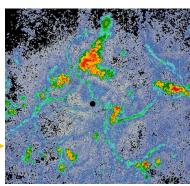
HS-PHI 2017 HWT Experiment

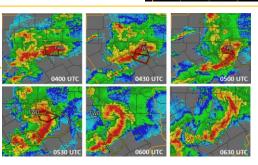
- Training materials hosted by Virtual Lab Collaboration Services
- 2017 Operations Weeks:
 - Shakedown: 20 24 Feb (1 forecaster)
 - Week 1: 20 24 Mar (2 forecasters)
 - Week 2: 3 7 Apr (2 forecasters)
 - Week 3: 17 21 Apr (2 forecasters)

	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5
8am	s - Introduction and Logistics (Greg) s:30 - FACETs Talk (Alan/Lans)	8 – 10.45 Scenario 2	8 – 10.45 Scenario 4	8 – 10.45 Scenario 6	8 – 12p End of Week interview and Survey 12a – 2p Optional Group Lunch
9am	9 - 9:45 What is PHI? (Greg)				
10am	10 – 10:45 Hazard Services (TracylKevin)				
11am	10:45 – 11:45 Experiment Expectations (Greg)	10:45 – 11:45 Scenario 2 Discussion	10:45 – 11:45 Scenario 4 Discussion	10:45 - 11:45 Scenario 6 Discussion	
12pm	12p – 1:15p Working Lunch/Pre-Week Survey	11:45 – 1p Lunch	11:45 – 12:45p Lunch	11:45 – 1p Lunch	
1pm	1.15p - Hazard Services Demo 1.45p - 3.30p Scenario 1 (Training)	1p – 3.45p Scenario 3	12:45p - 1:45p PHI Prototype Talk (Chris Karstens) 2p - 4:15p Scenario 5	1p – 3.45p Scenario 7	
2pm					
3pm					
4pm	2-30p - Senario 1 Discussion 4e - 8p Group Dinner or Storm Chase	3:45p – 5p Scenario 3 Discussion	4:15p – 5p Scenario 5 Discussion	3:45p – 5p Scenario 7 Discussion	
5pm					
6pm					
7pm					



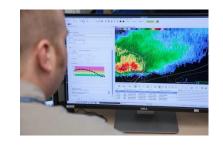


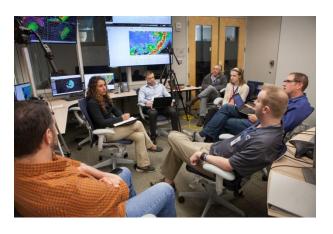

2017 Displaced Real-Time Scenarios


- Isolated marginally severe storm
 - Provide forecasters with basic concepts of PHI
- Developing supercell
 - For continued practice with PHI and object nudging.
- Merging/splitting supercells
 - Dealing with many events in very close proximity
- Quasi-Linear Convective System Tornadoes
 - Multiple-scale PHI
- Low-Shear Summer Southeast Microbursts
 - Random slow motion
- Upscale growth to squall line
 - Merging objects to larger objects
- Mature supercells
 - To study issues with cross-forecast area collaboration

Human Factors Data Collection

- Pre-operations survey
 - Internal probability thresholds, ProbSevere use, WFO warning team composition, forecasters' ideas for warning improvement
- Live video of forecasters, desktops, and group discussions
- Discussions during events with meteorologists, developers, trainers, and human factors scientists
- Post-event survey/discussion (60 minutes each)
 - NASA Task Load Index (TLX) Mental Workload Survey
 - Mental Demand, Physical Demand, Temporal Demand, Performance, Effort, Frustration
 - Confidence Survey
- End-of-Week Discussion (Friday)
 - Post-Study Usability Survey
 - Long Interview touching on the four main objectives
 - Technology, Human Factors, Methodology, Conceptology





Forecaster contributions

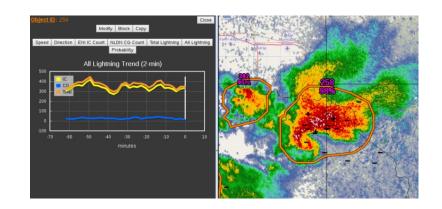
- Visiting forecasters provided suggestions to improve the software.
- These suggestions are triaged to determine if they can be:
 - Incorporated into HS-PHI directly
 - Incorporated into both the PHI Prototype and HS-PHI
 - Require proof-of-concept testing in the PHI Prototype first.
- Forecasters helping to formulate operational best practices – WDTD integration.

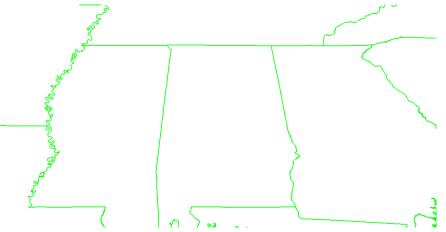
Year 2 Preliminary Findings

- New systematic software releases and virtual functional testing resulted in better progress and more stable platform than in Year 1.
 - Forecasters completed all required scenarios without major software interruptions.
- Cross-WFO collaboration and object handoff will require significant analysis
 - OAR Office of Weather and Air Quality (OWAQ) HWT Proposal not accepted – will pursue other means of funding.
- Software performance issues continue to impact the forecaster experience and need to be addressed.

Year 3 Development – Finish 2015 Prototype Capabilities

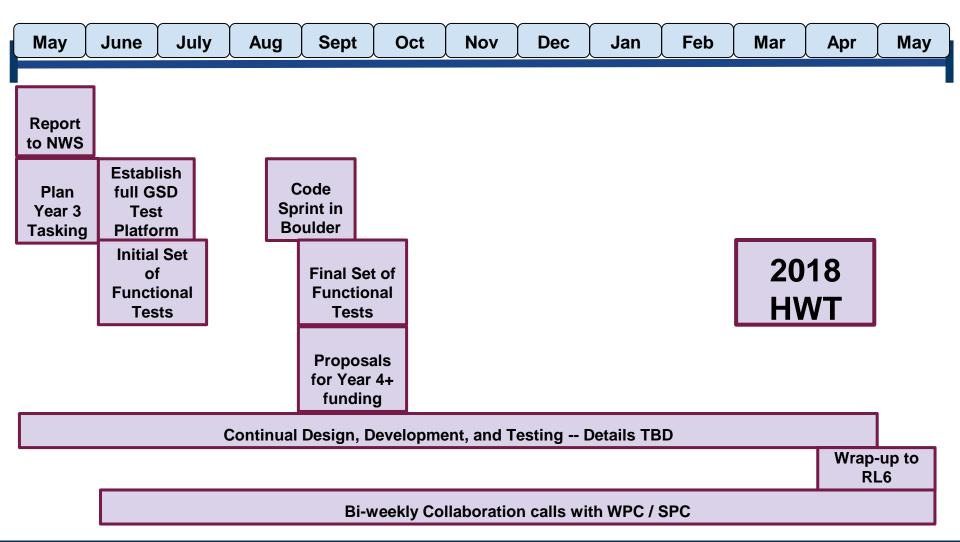
- Address performance issues and stability
 - Hazard Services Registry implementation results in slow-downs
 - Need to incorporate the latest improvements
 - If necessary, explore alternative solutions
 - Buffering of commands for quicker responsiveness
 - PHI requires intense user interaction with hazard objects which warrants performance analysis and optimization
 - More robust error handling
- Continue to refine functionality
 - Ownership of hazard objects and locking
 - Redraw polygon
 - Respond to user interface suggestions from forecasters





Year 3 Development – **New Functionality**

- Begin development of new functionality, including new items IDed by HS-PHI HWT tests, and those vetted by the PHI Prototype in 2016-2017.
- Candidates at the top of the list are:
 - Lightning PHI
 - Warning product output (with VTEC, etc.)
 - Deterministic Threats-In-Motion (TIM) polygons
 - Storm Longevity



Year 3 Timeline

Path to operations after the USWRP: Year 4+

- JTTI Proposal pending (software to RL7)
 - Complete development of 2016-2017 Prototype functionality
 - HWT spring experiments to include users (EMs, etc.)
 - Addition of new science as developed in companion JTTI proposal:
 - New plume model
 - New storm object ID and tracking model
 - Improved probabilistic guidance
 - New products informed by PHI Prototype
- Policy and paradigm shift to make FACETs operational