The Ensemble Situational Awareness Table: Overview and Future Enhancements

Bill Lamberson¹, Trevor Alcott², and Chad Kahler³

¹WPC Development and Training Branch ²ESRL ³NWS Western Region

VLAB Forum – 18 Nov 2015

Outline

- Overview of what the Ensemble Situational Awareness Table (ESAT) is
- Case studies that highlight ESAT's usefulness
- Overview of ongoing efforts to transition ESAT to NWS Integrated Dissemination Program (IDP)
- Scheduled improvements to ESAT

What is ESAT?

- ESAT is a tool that adds context to NAEFS forecasts
- Helps a forecaster identify and determine the likelihood of a potentially high impact weather event
- Extremely useful, probabilistic information contained in an ensemble forecast, but forecasters often don't have time to mine through the onslaught of data in search of it.
- Need a tool that will effectively leverage the data to point out what is significant in the forecast and how likely this significant event is

168-hour GEFS forecast of 500 mb heights

ESAT was developed to help fill this need

Adding Context to the Forecast

- Context added by comparing the ensemble mean forecast to reanalysis climatology (R-climate) and model climatology (M-climate)
- ESAT based on idea that ensemble mean can be leveraged as a confidence tool
 - When the ensemble mean departs significantly from climatology, usually indicates there is agreement in location and timing of large event among the members
 - A large event usually occurs
- A tool that displays how much the ensemble mean differs from climatology can improve forecasts by:
 - Alerting forecasters that a high impact event is possible
 - Clarifying the ensembles confidence in the event

R-Climate and M-Climate

- R-Climate: how forecast compares to typical conditions at this time of year
 - A trough this deep in November is very rare

- M-Climate: how forecast compares to other forecasts made at this time of year
 - The model rarely predicts this much precipitation at 5-days out in October

R-Climate Output Types

 Standardized Anomalies: How different the model forecast is from the climatological mean

 Percentile: Where the model forecast falls with respect to climatology

 Return Intervals: How often a forecast value shows up in the climatology

Probability (of extreme event):
 Percentage of the ensemble members that produce "extreme" values (i.e. outside climatology)

R-Climate Methodology

- NAEFS ensemble mean compared to 1979 2009
 Climate Forecast System Reanalysis (CFSR)
 - NAEFS is compared to CFSR over a 21-day window that centers on the forecast's valid time
 - Forecasts valid at 00Z compared only to 00Z analyses, 06Z compared to 06Z, etc.

 21-day window chosen because it's long enough to highlight events associated with impacts, but not so long that it only highlights massive events (don't need all-time records to have an impactful event)

R-Climate Variables

 ESAT primarily focuses on pressure-level variables: geopotential height, temperature, specific humidity, uwind, v-wind, and wind speed

 Includes a few single-level variables: sea-level pressure, precipitable water, and integrated vapor transport

M-Climate Methodology

- GEFS ensemble mean compared to ensemble mean from the GEFS Reforecast dataset
 - GEFS is compared to GEFS Reforecast over a 21-day window that centers on the forecast's valid time
 - 6-hour forecasts compared only to 6-hour reforecasts, 12-hour forecasts compared to only 12-hour reforecasts, etc.
 - Forecasts valid at 00Z compared to only 00Z analyses, 06Z compared to 06Z, etc.

M-Climate Output Types and Variables

 Standardized Anomalies: How different the model forecast is from the climatological mean

 Percentile: Where the model forecast falls with respect to climatology

 Return Intervals: How often these forecast values show up in the climatology

 Variables: geopotential height and temperature on a few pressure levels, sea-level pressure, precipitable water, and QPF (percentile only).

Recommended Output: Percentiles

- Not all forecast variables are normally distributed
- Percentiles help translate standardized anomalies into "where exactly does this event fall relative to climatology?"

Anomaly vs Percentile

NAEFS Mean IVT and Standardized Anomaly Hour 120 – Valid 12:00 UTC Mon Oct 28 2013

Relative to the 18-Oct to 08-Nov 1979-2009 CFSR climatology

NAEFS Mean IVT and Climatological Percentile Hour 120 – Valid 12:00 UTC Mon Oct 28 2013

Relative to the 18-Oct to 08-Nov 1979-2009 CFSR climatology

Where is ESAT?

http://ssd.wrh.noaa.gov/satable

ESAT Verification: is it Useful?

 Vist http://ssd.wrh.noaa.gov/satable/verify for whole host of verification statistics, but short answer is: Yes!

Verification For Anomalies

trevor.alcott@noaa.gov NAEFS Ensemble Mean Verification - North America Domain 500-hPa Geopotential Height (09/11/2014 - 09/06/2015) Forecast Frequency 72-h Verification 10⁶ - 72-h 144-h 10⁵ 240-h 10⁴ 10³ 10² Mean 10th/90th%ile -2 -1 0 Forecast Anomaly Forecast Anomaly 144-h Verification 240-h Verification 10th/90th%ile 10th/90th%ile

Verification For Percentiles

Verification: Standardized Anomalies

Verification: Standardized Anomalies

Verification: Standardized Anomalies

Verification: Percentiles

NAEFS 100th-Percentile Verification: 500-hPa Geopotential Height North America Domain (06/08/2015 - 09/06/2015)

trevor.alcott@noaa.gov

Verification: Percentiles

NAEFS 100th-Percentile Verification: 500-hPa Geopotential Height North America Domain (06/08/2015 - 09/06/2015)

trevor.alcott@noaa.gov

At longer lead times, NAEFS ensemble mean tends to underforecast extreme events

Verification: Percentiles

500-hPa Geopotential Height

"False-Alarm Rate"
When a 100th-percentile event was forecast, how did it verify?

"Probability of Detection"
When a 100th-percentile event occurred, what was the forecast?

Verification

- Smoothing effect of a multi-model mean can be used to our advantage:
 - Big signal means that most members agree on location, timing, and large amplitude
 - Very low false-alarm ratio
- Rough estimates of NAEFS predictability limits over North America
 - Major upper-level patterns (8 10 days)
 - Major surface highs and lows (6 8 days)
 - Significant warmth and cold (5 7) days
 - Strong large-scale winds (5 7 days)
 - Significant rainfall events (3 5 days)

Case Study: Pacific NW Windstorm of 29 Aug 2015

- 2 Fatalities in Western Washington
- 300,000+ customers without power at storm's peak
- Widespread wind gusts of
 50 mph 70 mph
- Strongest summer windstorm to impact the Pacific Northwest in recorded history.

	Nort	hwe	st U.	S. Ta	ble	Aug	24, 1	2015	12Z	Run	
			<u>Z</u>	I	<u>U</u>	V	WSP	SLP	Q	<u>PW</u>	<u>IVT</u>
0	Mon		<u>90</u>	<u>90</u>	AVG	<u>90</u>	<u>90</u>	AVG	<u>99</u>	<u>10</u>	<u>90</u>
6	24th	18Z	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	AVG	<u>99</u>	<u>10</u>	<u>90</u>
12	Tue	00Z	<u>90</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>90</u>	AVG	<u>99</u>	<u>10</u>	<u>90</u>
18	25th	06Z	<u>90</u>	<u>10</u>	AVG	<u>90</u>	<u>90</u>	AVG	<u>10</u>	<u>10</u>	<u>90</u>
24		12Z	<u>90</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>AVG</u>	AVG	<u>10</u>	<u>10</u>	<u>90</u>
30		18Z	<u>90</u>	<u>99</u>	<u>90</u>	<u>90</u>	AVG	AVG	<u>10</u>	<u>10</u>	AVG
36	Wed	00Z	<u>90</u>	<u>97.5</u>	AVG	<u>90</u>	AVG	AVG	97.5	<u>90</u>	<u>90</u>
42	26th	06Z	<u>90</u>	<u>97.5</u>	AVG	<u>90</u>	AVG	AVG	97.5	<u>97.5</u>	<u>97.5</u>
48		12Z	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>90</u>	<u>90</u>	AVG	97.5	<u>99</u>	<u>99.5</u>
54		18Z	<u>90</u>	<u>2.5</u>	AVG	<u>90</u>	<u>AVG</u>	AVG	<u>99</u>	<u>99</u>	<u>99</u>
60	Thu	00Z	<u>90</u>	<u>97.5</u>	AVG	97.5	<u>90</u>	<u>90</u>	<u>99.5</u>	<u>99</u>	<u>97.5</u>
66	27th	06Z	<u>90</u>	<u>10</u>	AVG	<u>90</u>	<u>90</u>	<u>90</u>	99	97.5	<u>90</u>
72		12Z	97.5	<u>97.5</u>	AVG	97.5	<u>90</u>	<u>90</u>	97.5	<u>90</u>	<u>90</u>
78		18Z	<u>90</u>	<u>99</u>	AVG	97.5	<u>90</u>	<u>90</u>	99	<u>90</u>	<u>90</u>
84	Fri	00Z	<u>90</u>	<u>99</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>90</u>	97.5	97.5	97.5
90	28th	06Z	<u>90</u>	<u>99</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>99</u>	<u>97.5</u>	<u>97.5</u>
96		12Z	<u>90</u>	<u>99</u>	<u>90</u>	<u>90</u>	<u>90</u>	AVG	99	97.5	97.5
102		18Z	<u>90</u>	99	90	90	90	AVG	<u>99</u>	<u>97.5</u>	<u>97.5</u>
102		υUΖ	<u>90</u>	<u>99</u>	<u>90</u>	<u>10</u>	<u>90</u>	AVG	99	1 5	99
114	29th	06Z	<u>10</u>	<u>99</u>	<u>90</u>	<u>10</u>	<u>90</u>	<u>10</u>	97.5	<u>97.5</u>	<u>99</u>
120		12Z	<u>10</u>	<u>99</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>10</u>	97.5	<u>97.5</u>	<u>99</u>
126		18Z	<u>10</u>	<u>99</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>10</u>	97.5	<u>90</u>	<u>99</u>
13z		00Z	<u>10</u>	<u>99</u>	<u>90</u>	<u>97.5</u>	<u>97.5</u>	<u>10</u>	99	00	J1. 5
138	30th	06Z	<u>10</u>	<u>99</u>	90	99	90	<u>10</u>	97.5		97.5
144		12Z	<u>10</u>	<u>99</u>	90	97.5	90	<u>10</u>	97.5	<u>90</u>	97.5
150		18Z	<u>10</u>	99	90	97.5	90	<u>10</u>	97.5	90	90

NAEFS MEAN 850-hPa Wind Speed (kt) and Percentile Hour 126 – Valid 18:00 UTC Sat Aug 29 2015

Relative to the 19-Aug to 09-Sep 1979-2009 CFSR climatology (gray = near or below ground)

	Nort	hwe	st U.	S. Ta	able	Aug	, 25, 1	2015	12Z	Run	
			<u>Z</u>	I	<u>U</u>	V	WSP	SLP	Q	<u>PW</u>	<u>IVT</u>
0	Tue	12Z	<u>97.5</u>	<u>99</u>	<u>90</u>	<u>90</u>	<u>90</u>	AVG	<u>2.5</u>	<u>2.5</u>	<u>90</u>
6	25th	18Z	<u>99</u>	<u>99.5</u>	<u>90</u>	<u>90</u>	<u>90</u>	AVG	<u>2.5</u>	<u>10</u>	<u>90</u>
12	Wed	00Z	<u>99</u>	<u>97.5</u>	1	<u>90</u>	<u>AVG</u>	AVG	<u>97.5</u>	<u>10</u>	<u>90</u>
18	26th	06Z	<u>97.5</u>	<u>97.5</u>	1	<u>97.5</u>	<u>90</u>	AVG	<u>99</u>	<u>97.5</u>	<u>99</u>
24		12Z	<u>97.5</u>	<u>97.5</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	AVG	<u>99</u>	<u>99.5</u>	MAX
30		18Z	<u>90</u>	<u>99</u>	<u>90</u>	<u>97.5</u>	97.5	<u>90</u>	MAX	<u>99</u>	MAX
36	Thu	00Z	<u>90</u>	97.5	<u>90</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>99.5</u>	<u>99</u>	<u>99</u>
42	27th	06Z	<u>90</u>	97.5	<u>90</u>	<u>90</u>	90	<u>90</u>	<u>99.5</u>	97.5	<u>90</u>
48		12Z	<u>90</u>	<u>99</u>	AVG	<u>90</u>	AVG	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>90</u>
54		18Z	<u>90</u>	<u>99</u>	AVG	0.5	<u>90</u>	<u>90</u>	<u>99</u>	<u>90</u>	<u>90</u>
60	Fri	00Z	<u>90</u>	<u>99.5</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>99</u>	<u>97.5</u>	<u>97.5</u>
66	28th	06Z	<u>90</u>	<u>99.5</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	AVG	<u>99.5</u>	<u>97.5</u>	<u>97.5</u>
72		12Z	AVG	<u>99</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	AVG	MAX	<u>99</u>	<u>99</u>
78		18Z	<u>10</u>	99	90	97 5	90	<u>10</u>	<u>99.5</u>	<u>99</u>	<u>99</u>
84	- M	υUL	<u>10</u>	<u>99</u>	<u>90</u>	<u>99</u>	<u>99</u>	<u>2.5</u>	<u>99</u>	ķ	мдх
90	29th	06Z	1	<u>99</u>	<u>97.5</u>	<u>99</u>	<u>99</u>	1	<u>99</u>	<u>99</u>	MAX
96		12Z	MIN	<u>99</u>	<u>99</u>	<u>99</u>	<u>99</u>	0.5	<u>97.5</u>	<u>97.5</u>	MAX
102		18Z	0.5	<u>99</u>	<u>99</u>	<u>99.5</u>	MAX	0.5	<u>99</u>	<u>97.5</u>	MAX
100	,	00Z	<u>1</u>	<u>97.5</u>	<u>99</u>	<u>99</u>	<u>99</u>	1	99	99	.vIAX
114	30th	06Z	2.5	90	91.5	<u>99.5</u>	99	<u>2.5</u>	<u>97.5</u>	<u>90</u>	<u>99.5</u>
120	i 🚃	12Z	<u>2.5</u>	<u>97.5</u>	<u>97.5</u>	<u>99</u>	<u>99</u>	<u>2.5</u>	97.5	<u>90</u>	<u>99</u>
126		18Z	<u>10</u>	<u>97.5</u>	<u>97.5</u>	<u>97.5</u>	<u>97.5</u>	<u>10</u>	<u>97.5</u>	<u>90</u>	<u>97.5</u>
132	Mon	00Z	<u>10</u>	<u>10</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>10</u>	<u>97.5</u>	<u>90</u>	<u>99</u>
138	31st	06Z	<u>10</u>	<u>10</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>90</u>
144		12Z	<u>10</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>10</u>	<u>90</u>	AVG	<u>90</u>
150		18Z	2.5	<u>10</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	2.5	<u>90</u>	AVG	<u>90</u>

NAEFS MEAN 850-hPa Wind Speed (kt) and Percentile Hour 102 – Valid 18:00 UTC Sat Aug 29 2015

Relative to the 19-Aug to 09-Sep 1979-2009 CFSR climatology (gray = near or below ground)

	Nort	hwe	st U.	S. Ta	able	Aug	, 27, 1	2015	12Z	Run	
			<u>Z</u>	Ι	<u>U</u>		<u>WSP</u>		Q	<u>PW</u>	<u>IVT</u>
0	Thu	12Z	<u>99</u>	<u>99.5</u>	<u>90</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>99</u>	<u>90</u>	<u>97.5</u>
6	27th	18Z	<u>90</u>	<u>99</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>90</u>	<u>99</u>	<u>97.5</u>	<u>97.5</u>
12	Fri	00Z	<u>90</u>	MAX	<u>90</u>	<u>99</u>	<u>90</u>	<u>90</u>	<u>99.5</u>	<u>99</u>	<u>99</u>
18	28th	06Z	<u>90</u>	MAX	<u>90</u>	<u>99.5</u>	<u>97.5</u>	AVG	MAX	<u>99</u>	<u>99</u>
24		12Z	<u>90</u>	<u>99</u>	<u>90</u>	<u>99</u>	<u>99</u>	AVG	MAX	<u>99</u>	<u>99</u>
30		18Z	<u>10</u>	99	90	99 5	99	<u>10</u>	<u>99.5</u>	<u>99</u>	MAX
36	-	υυΖ	<u>2.5</u>	<u>99</u>	<u>90</u>	MAX	MAX	<u>2.5</u>	<u>99</u>	1	МАХ
42	29th	06Z	MIN	<u>99</u>	MAX	MAX	<u>MAX</u>	<u>MIN</u>	<u>99</u>	<u>99</u>	MAX
48		12Z	<u>MIN</u>	<u>99</u>	MAX	MAX	<u>MAX</u>	MIN	<u>99</u>	<u>99</u>	MAX
54		18Z	<u>MIN</u>	<u>99</u>	<u>99.5</u>	MAX	<u>MAX</u>	MIN	<u>99.5</u>	<u>99</u>	MAX
60	200	00Z	<u>MIN</u>	<u>99</u>	<u>99.5</u>	MAX	<u>MAX</u>	<u>MIN</u>	99.5	97.5	avi/4X
66	30th	06Z	1	<u>97.5</u>	<u>99.5</u>	<u> </u>	<u>IVIAX</u>	1	<u>99</u>	<u>97.5</u>	<u>99.5</u>
72		12Z	<u>2.5</u>	<u>90</u>	MAX	<u>99</u>	<u>99.5</u>	<u>2.5</u>	<u>97.5</u>	<u>90</u>	<u>99.5</u>
78		18Z	<u>2.5</u>	<u>90</u>	<u>99</u>	<u>99</u>	<u>99</u>	<u>10</u>	<u>10</u>	<u>97.5</u>	<u>99</u>
84	Mon	00Z	<u>2.5</u>	<u>90</u>	<u>99</u>	<u>97.5</u>	<u>99</u>	<u>2.5</u>	<u>99</u>	<u>90</u>	<u>99</u>
90	31st	06Z	<u>2.5</u>	<u>10</u>	<u>99</u>	<u>99</u>	<u>99</u>	<u>2.5</u>	<u>90</u>	<u>90</u>	<u>97.5</u>
96		12Z	<u>10</u>	<u>90</u>	<u>99.5</u>	<u>97.5</u>	<u>99</u>	<u>2.5</u>	<u>90</u>	<u>90</u>	<u>97.5</u>
102		18Z	<u>10</u>	<u>10</u>	<u>97.5</u>	<u>97.5</u>	<u>97.5</u>	<u>10</u>	<u>90</u>	AVG	<u>90</u>
108	Tue	00Z	<u>2.5</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>90</u>	<u>2.5</u>	<u>90</u>	AVG	<u>90</u>
114	1st	06Z	<u>2.5</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>10</u>	<u>90</u>	AVG	<u>90</u>
120		12Z	1	<u>10</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>10</u>	<u>90</u>	AVG	<u>90</u>
126		18Z	1	<u>10</u>	<u>97.5</u>	<u>90</u>	<u>90</u>	<u>2.5</u>	<u>90</u>	AVG	<u>90</u>
132	Wed	00Z	1	<u>10</u>	<u>90</u>	<u>97.5</u>	<u>90</u>	<u>2.5</u>	<u>97.5</u>	AVG	<u>90</u>
138	2nd	06Z	<u>2.5</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>10</u>	<u>90</u>	AVG	<u>90</u>
144		12Z	<u>2.5</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>10</u>	<u>90</u>	AVG	<u>90</u>
150		18Z	<u>10</u>	<u>10</u>	<u>90</u>	<u>90</u>	<u>90</u>	<u>10</u>	<u>97.5</u>	AVG	AVG

NAEFS MEAN 850-hPa Wind Speed (kt) and Percentile Hour 054 – Valid 18:00 UTC Sat Aug 29 2015

Relative to the 19-Aug to 09-Sep 1979-2009 CFSR climatology (gray = near or below ground)

Hour 126 - Valid 18:00 UTC Sat Aug 29 2015

Hour 054 - Valid 18:00 UTC Sat Aug 29 2015

97.5

90

99.5

MAX

ΑT

18Z

MAX

ALL

HRS

99

Hour 102 - Valid 18:00 UTC Sat Aug 29 2015

Analysis - Valid 18:00 UTC Sat Aug 29 2015

QPF Case Study: TX and OK Flood 24 May 2015

24-hour precipitation ending 1200 UTC 24 May 2015

Damage in Wimberley, TX

Texas Table May 19, 2015 12Z Run										
			<u>6-h</u>	<u>12-h</u>	<u>24-h</u>	<u>48-h</u>	<u>72-h</u>			
6	Tue 19th	18Z	MAX							
12	Wed	00Z	<u>99.1</u>	MAX						
18	20th	06Z	<u>99.1</u>	<u>98.1</u>						
24		12Z	<u>99.0</u>	<u>98.9</u>	<u>99.4</u>					
30] [18Z	<u>99.8</u>	<u>99.7</u>	<u>98.8</u>					
36	Thu	00Z	<u>97.7</u>	<u>99.0</u>	<u>98.6</u>					
42	21st	06Z	<u>95.2</u>	<u>98.5</u>	99.2					
48		12Z	<u>97.9</u>	<u>96.4</u>	<u>98.5</u>	<u>98.4</u>				
54		18Z	<u>99.3</u>	<u>98.8</u>	<u>98.3</u>	<u>98.7</u>				
60	Fri	00Z	<u>99.7</u>	<u>99.4</u>	<u>98.9</u>	<u>98.8</u>				
66	22nd	06Z	<u>99.9</u>	<u>99.8</u>	<u>99.8</u>	<u>99.9</u>				
72		12Z	<u>99.7</u>	MAX	<u>99.9</u>	<u>99.8</u>	<u>99.9</u>			
78		18Z	<u>97.8</u>	98.8	<u>99.8</u>	<u>99.9</u>	<u>99.9</u>			
84	Sat	00Z	<u>93.5</u>	<u>97.1</u>	<u>99.9</u>	<u>99.9</u>	<u>99.8</u>			
90	23rd	06Z	<u>99.3</u>	99.3	<u>99.4</u>	<u>99.9</u>	<u>99.9</u>			
96] [12Z	<u>99.8</u>	99.9	<u>99.4</u>	<u>99.9</u>	<u>99.9</u>			
102		187	00.0	00.0	99.5	MAX	MAX			
10-	Sun	00Z	99.8	<u>99.7</u>	<u>99.9</u>	MAX	0			
114	24th	06Z	MAX	MAX	MAX	MAX	MAX			
120]	12Z	99.8	MAX	MAX	MAX	MAX			
126]	18Z	MAX	99.9	MAX	MAX	MAX			
13z	4-0	00Z	<u>99.9</u>	<u>99.9</u>	MAX	MAY	IVIAX			
138	25th	06Z	<u>99.6</u>	<u>99.7</u>	<u>99.8</u>	MAX	MAX			

GEFS Mean QPF (in) and M-Climate percentile 96-120-h forecast valid 12Z Sat May 23 2015 to 12Z Sun May 24 2015

	Tex	cas Tal	ole Ma	ay 21, 2	015 122	Run	
			<u>6-h</u>	<u>12-h</u>	<u>24-h</u>	<u>48-h</u>	<u>72-h</u>
6	Thu 21st	18Z	<u>99.5</u>				
12	Fri	00Z	99.2	<u>98.3</u>			
18	22nd	06Z	MAX	MAX			
24	1	12Z	<u>99.6</u>	99.9	<u>99.7</u>		
30	1	18Z	<u>95.6</u>	99.2	<u>99.7</u>		
36	Sat	00Z	92.5	94.8	<u>99.7</u>		
42	23rd	06Z	MAX	MAX	MAX		
48	1	12Z	<u>99.7</u>	MAX	MAX	MAX	
54		407	<u></u>	<u> </u>		MAX	
JU	Sun	00Z	MAX	MAX	MAX	MAX	
66	24th	06Z	MAX	MAX	MAX	MAX	
72	1	12Z	MAX	MAX	MAX	MAX	MAX
78	1	18Z	99.9	MAX	MAX	MAX	MAX
84	IVIO	007	99.9	MAX	MAY	- VA	MAX
90	25th	06Z	99.8	<u>99.9</u>	MAX	MAX	MAX
96	1 1	12Z	MAX	99.9	99.9	MAX	MAX
102	1 1	18Z	99.9	MAX	99.9	MAX	MAX
108	Tue	00Z	<u>98.9</u>	99.9	99.9	MAX	MAX
114	26th	06Z	<u>96.7</u>	<u>98.4</u>	99.9	MAX	MAX
120	1	12Z	<u>95.0</u>	97.6	99.3	99.9	MAX
126	1	18Z	96.9	97.0	<u>98.5</u>	99.9	MAX
132	Wed	00Z	<u>98.5</u>	97.6	98.2	MAX	MAX
138	27th	06Z	90.8	96.7	97.1	99.7	99.9

GEFS Mean QPF (in) and M-Climate percentile 48-72-h forecast valid 12Z Sat May 23 2015 to 12Z Sun May 24 2015

	Tex	xas Tal	ble Ma	ay 23, 2	015 127	Run	
			<u>6-h</u>	<u>12-h</u>	24-h	<u>48-h</u>	<u>72-h</u>
6	Sat 23rd	18Z	MAX				
***	Sun	00Z	MAX	MAX			
18	24th	06Z	MAX	MAX			
24		12Z	MAX	MAX	MAX		
30		18Z	MAX	MAX	MAX		
30	Mon	00Z	MAX	MAX	MAX		
42	25th	06Z	<u>99.5</u>	<u>99.8</u>	<u>99.9</u>		
48		12Z	<u>99.9</u>	<u>99.8</u>	<u>99.9</u>	MAX	
54		18Z	<u>99.9</u>	<u>99.8</u>	<u>99.6</u>	MAX	
60	Tue	00Z	MAX	MAX	<u>99.6</u>	MAX	
66	26th	06Z	MAX	MAX	MAX	<u>99.9</u>	
72		12Z	MAX	MAX	MAX	<u>99.9</u>	MAX
78		18Z	MAX	MAX	MAX	<u>99.9</u>	MAX
84	Wed	00Z	<u>99.3</u>	<u>99.7</u>	<u>99.9</u>	<u>99.9</u>	MAX
90	27th	06Z	<u>97.8</u>	<u>99.0</u>	<u>99.9</u>	<u>99.9</u>	MAX
96		12Z	<u>93.7</u>	<u>97.3</u>	<u>99.7</u>	MAX	MAX
102		18Z	<u>97.0</u>	<u>96.0</u>	<u>99.1</u>	MAX	MAX
108	Thu	00Z	<u>97.9</u>	<u>97.6</u>	<u>98.2</u>	MAX	MAX
114	28th	06Z	<u>99.7</u>	<u>99.7</u>	<u>98.9</u>	MAX	MAX
120		12Z	MAX	<u>99.9</u>	<u>99.5</u>	<u>99.5</u>	MAX
126		18Z	<u>98.8</u>	<u>99.8</u>	<u>99.6</u>	<u>98.5</u>	MAX
132	Fri	00Z	<u>99.9</u>	<u>99.9</u>	<u>99.9</u>	<u>98.6</u>	MAX
138	29th	06Z	<u>98.3</u>	99.2	<u>99.7</u>	<u>99.5</u>	99.8

GEFS Mean QPF (in) and M-Climate percentile 0-24-h forecast valid 12Z Sat May 23 2015 to 12Z Sun May 24 2015

97

99

99.5

99.8

MAX

96 - 120-h forecast ending 12Z May 24 2015

48 - 72-h forecast ending 12Z May 24 2015

24-hour precip ending 12Z 24 May 2015

Case Study Overview

- ESAT provided a ~5 day heads-up that an extreme, high-impact weather event was likely
- ESAT visually communicated this information efficiently.

ESAT Caveats

- ESAT uses a 21-day window so "Max" or "Min" forecasts are rarely all-time highs or lows
- Not every high-impact event is associated with anomalous upper-level forecast fields
- Anomalous upper-level fields are not always associated with high-impact weather
- Not every high-impact event is well predicted and the tool will struggle with these events
- The tool may not provide a heads-up for every high impact event, but when it is indicating a high impact event, pay attention!

Current Work on ESAT

- ESAT is transitioning to the Integrated Dissemination Program (IDP)
 - This will allow for enhanced stability and support for the tool

- The transition process is underway and Version 1 (V1.0) will hopefully be available by February 2015
 - V1.0 maintains ESAT's current functionality
 - Only improvement is the addition of table and plotting domains for all NWS CWAs

Training material currently in development

Future Work: Improvements to ESAT

- V2.0 of ESAT will tentatively contain the following major enhancements:
 - More regional domains and domains that cover the Pacific and Atlantic Oceans
 - 91-day climatology functionality in addition to current 21-day
 - More variables, particularly surface variables such as 2m temp, 10 m wind, and CAPE
 - A version of ESAT for the ECMWF ensemble
- V2.0 has a tentative release date of summer 2016
- Enhancements for V2.0 are not set in stone, so if you have an idea or want to see something in ESAT please let me know.

Thanks!

Questions or Comments?

bill.lamberson@noaa.gov