Automated Detection of Weather Fronts Using a Deep Learning Neural Network

James C Biard Vexcel Imaging

Kenneth E Kunkel North Carolina Institute for Climate Studies North Carolina State University

August 19, 2020

Motivation

- The Goal Understand how Precipitation
 Frequency estimates across North America
 (NA) will change as the climate changes.
- Extreme precipitation associated with weather fronts is the dominant contributor over most of North America.
- We need to understand how weather front behavior will change as the climate changes.
- Automated front detection will be required.

The Problem Space

- Weather front detection is still a manual process.
- Visual recognition problems are often good candidates for Neural Network solutions.
- A "supervised learning" neural network approach requires truth data.

Training Data

- We used NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) with data from 1980-2018 for our inputs. We used pressure difference from a moving 30-day mean, near-surface air temperature, specific humidity, and vector wind velocity.
- Used the Coded Surface Bulletin (CSB)
 digitized front polyline dataset with data from
 2003-2018 for our labels to train against.

Training Data

- Used a 1x1° data grid centered over North America (10–70N x 171–31W).
- Converted the CSB polylines to gridded maps with lines drawn 3 grid cells wide.
- CSB data grid layers:
 - Cold fronts
 - Warm fronts
 - Stationary fronts
 - Occluded fronts
 - No front

- Neural networks are composed of simplistic analogs of biological neurons organized in layers.
- Here is the basic structure of a machine learning neuron.

$$O = f\left(b + \sum_{i} w_{i} I_{i}\right)$$

 A non-linear function of a linear superposition of a set of input values.

 A neural network is formed by building layers where the outputs from one set of neurons are used as inputs to another set.

- In the 1960s, mathematicians proved that any complex function of multiple inputs can be decomposed into a combination of linear superpositions and simple non-linear functions applied to the inputs.
- This is, in essence, a neural network with one interior (hidden) layer.
- The problem is finding the appropriate functions and weights!

- In supervised machine learning, the weights are found through hyper-dimensional gradient descent.
 - Produce outputs for a number of inputs with a network initialized with random weights and biases.
 - Use the discrepancy between network outputs and "truth" outputs to update the weights and biases to minimize the difference.
 - Repeat many times.

- Finding a good network design for your problem is an art.
- Take care, because it is possible to memorize the right answer for each input rather than learn the underlying functional relationships (overfitting).

Network Design

Training

- Trained with data from 2008-2012.
- Randomly selected ¼ of the possible 17x17
 grid cell input patches while also ensuring that
 there were twice as many "no front" patches
 as "front" patches.
- Limited training and testing to region around CONUS where the rate of front crossings was 40/year or better.
- Training took ~3 days on a NERSC GPU node.

Training

CSB Labels 2003 - 2018						
	Cold	Warm	Stationary	Occluded	None	Total
Counts	8,551,914	4,631,517	12,797,269	3,893,614	182,795,286	212,669,600
Percent	4.02%	2.18%	6.02%	1.83%	85.95%	

MERRA-2 Predictions 2003 - 2018						
	Cold	Warm	Stationary	Occluded	None	Total
Counts	8,950,546	2,785,315	10,867,527	4,098,013	185,968,199	212,669,600
Percent	4.21%	1.31%	5.11%	1.93%	87.44%	

Confusion Matrix 2008-2015

		Predicted				
		Cold	Warm	Stationary	Occluded	None
	Cold	4,118,370	166,264	754,909	231,514	3,280,857
	Warm	214,405	1,104,025	743,101	300,147	2,269,839
Actual	Stationary	990,596	244,167	4,464,480	127,063	6,970,963
	Occluded	194,304	128,904	201,375	1,643,822	1,725,209
	None	3,432,871	1,141,955	4,703,662	1,795,467	171,721,331

Front/No-Front Confusion Matrix 2003-2018				
		Predicted		
		Front	None	
Actual	Front	15,627,446	14,246,868	
Actual	None	11,073,955	171,721,331	

Front Identification Comparison

2009-01-01 00:00:00

- The performance of the network may be better than the metrics suggest.
- It may be more conservative about drawing weak fronts.
- Slight geographic offsets count as misses.
- Differences in type of front count as misses.

Front Climatologies

- Goal of the front detection work was to develop front climatologies.
- Decided to measure the rate at which fronts of each type crossed each 1°x1° grid cell.
- Also measured the rate at which fronts of any type crossed each cell.
- Calculated climatologies for CSB and for MERRA-2 network outputs.

Front Climatologies

- For MERRA-2, extracted polylines from the front probability data grids produced by the network.
- Produced hard-edged 3-cell-wide data grids on 3-hourly time steps.
- Stacked the data grids to produce a "front event" time series for each front type for each grid cell.

Front Climatologies

- Filtered each time series by removing the front events that were within 24 hours after each initial event to prevent overcounting.
- Produced front-crossing rates by month and season from the counts.
- Averaged the rates by month and season over years to produce monthly and seasonal front crossing rate climatologies.

- Produced climatologies as described for MERRA-2 network outputs.
- Produced climatologies the same way for the CSB dataset.
- Used the 2003-2018 overlapping time frame for each.
- Also averaged the results over a CONUScentered region spanning 20N – 50N, 125W – 65W.

Front Crossing Rate Climatologies Mean over CONUS ROI

Conclusions

- The network appears to perform well.
- Hard to determine if further training is warranted.
- Need to try different network architectures.

Questions?

Support for this project was provided by the U.S. Department of Defense Strategic Environmental Research and Development Program Contract # W912HQ 15-C-0010

