Using the Ensemble Situational Awareness Table:

How I Learned to Stop Worrying and Love the Global Ensembles

Trevor Alcott

Science and Technology Infusion Division - NWS Western Region HQ

Contributors: Randy Graham and Nanette Hosenfeld (WFO-Salt Lake City, UT), Chad Kahler (Western Region), Rich Grumm (WFO-State College, PA)

February VLab Forum – 19 Feb 2014

Providing Tools for DSS

- Using good science, our goal is to objectively answer these questions for the forecaster:
 - What is significant in the forecast?
 - How likely is it to happen?
 - What are the potential impacts?
- "Better living through verification"
 - There's a lot of guidance out there, but should I believe it?

Climatological Perspectives

- "R-Climate": reanalysis-climate
 - How does the model forecast compare to typical conditions at this time of year?
 - "You don't usually get a trough this deep in September"
- "M-Climate": model-climate
 - How does the model forecast compare to what is typically forecast at the same lead time, and this time of year?
 - "The model rarely shows precipitable water this high, 5 days out"

R-Climate Calculations

 Goal: quickly identify where/when the forecast departs significantly from climatology.

- NAEFS ensemble mean is compared to the 1979-2009 Climate Forecast System Reanalysis.
 - 1.0x1.0-degree NAEFS interpolated to 0.5 deg
 - Forecast is compared the CFSR for a 21-day window centered on the valid time.
 - 00Z compared only to 00Z analyses, 06Z to 06Z, etc.

User Interface

Output Types

- Not all fields are normally distributed
- Percentiles/return intervals help translate standardized anomalies into "where exactly does this event fall relative to climatology?"

R-Climate: Standardized Anomaly

R-Climate: Percentile

NAEFS Mean Integrated WV Transport ($kgm^{-1} s^{-1}$) and Climatological Percentile HOUR 120 - VALID 12:00 UTC Mon Oct 28 2013

Relative to the 18-Oct to 08-Nov 1979-2009 CFSR climatology

R-Climate: Return Interval

M-Climate QPF

GEFS QPF Seasonal Model Climate

96-108-h forecast ending 12:00 UTC Fri 04 Oct 2013

 For a multi-model ensemble mean to depart from climatology requires that most members show a significant feature in the same location at the same time

• Hypothesis: using a *multi-model* ensemble mean at medium to long ranges probably misses a lot of extreme events, but when it does "go big", it's usually right.

Anomaly Verification: 500-mb Height

Anomaly Verification: PWAT

Verification: 700-mb Wind Speed

Probabilistic Forecasts

- What fraction of NAEFS members produce an "extreme" forecast?
- We are using "extreme" loosely
 - outside the 3-week climatology
 - not necessarily (rarely, in fact) all-time high or low
- 3 weeks is a good balance, because "outside-theclimatology" events are:
 - common enough that we can evaluate forecast skill
 - rare enough to be associated with impacts

Probabilistic Forecasts

Probabilistic Forecasts: 500-mb Height

Probabilistic Forecasts: 700-mb Wind Speed

NAEFS Probabilistic Forecast Verification - North America Domain (01/01/2013 - 10/31/2013) 700-hPa Wind-Speed

Probabilistic Forecasts: PWAT

Alaska/Western US Trough

27-30 Oct 2013 Storm Reports

500-hPa Height

700-hPa Temperature

AT 12Z

700-hPa Wind Speed

NAEFS Mean 500-hPa Geopotential Height (m) and C

700-hPa Temperature

700-hPa Wind Speed

500-hPa Height NAEFS Mean 500-hPa Geopotential Height (m) and G

700-hPa Temperature

700-hPa Wind Speed

NAEFS Mean 500-hPa Geopotential Height (m) and Climatological Percentile HOUR 120 - VALID 12:00 UTC Mon Oct 28 2013 NAEFS Mean 700-hPa Temperature (C) and Climatological Percentile HOUR 120 - VALID 12:00 UTC Mon Oct 28 2013 120-h FCST

NAEFS Mean 500-hPa Geopotential Height (m) and Climatological Percentile HOUR 072 - VALID 12:00 UTC Mon Oct 28 2013

700-hPa Temperature

700-hPa Wind Speed

NAEFS Mean 500-hPa Geopotential Height (m) and Climatological Percentile HOUR 036 - VALID 12:00 UTC Mon Oct 28 2013

700-hPa Temperature

700-hPa Wind Speed

500-hPa Height

700-hPa Temperature

AT 12Z

700-hPa Wind Speed

The Next Step

- UK Met Office "impact matrix"
- Green to red == larger anomalies / percentiles / higher probabilities of extremes
- Danger colors in the SA tables depend on high "impact" and high confidence
- There's an avenue here to translate ensemble information into a partner/public message.

Conclusions

- The smoothing effect of a multi-model ensemble mean can be used to our advantage:
 - the mean only differs significantly from climatology when the bulk of members from both models agree on amplitude, location and timing
 - when an unusual/extreme event does show up, there is typically a high likelihood that it will verify
 - "Slam dunks" may be more common than we think, and may exist at longer lead times than we're used to.
- Probabilistic information is fairly reliable in the medium range
 - When reliability does break down, the ensemble tends to be overconfident.

Conclusions

- A very rough take on NAEFS predictability limits over N America (your mileage may vary):
 - Major upper-level patterns 8-10 days
 - Major surface highs/lows 6-8 days
 - Significant warmth/cold 5-7 days
 - Strong large-scale winds 5-7 days
 - Significant column moisture 3-5 days

Caveats

Caveats:

- not every high-impact event is associated with anomalous upper-level forecast fields
- anomalous upper-level fields are not always associated with high-impact weather
- not every high-impact event is well predicted
- tools struggle with moderate-impact, lowconfidence events

Questions/comments

trevor.alcott@noaa.gov 801-524-5131