

mPING Motivation

- Hydrometeor typing:
- Summer: Hail vs. Rain
 - Very successful and well-established capability.
- Winter: Rain vs. Snow vs. Drizzle vs. Ice Pellets vs. Graupel vs. Freezing Rain vs. Freezing Drizzle vs. ...
 - Capability largely unknown.

In The Beginning...

- Winter 2006-2007: The Winter Hydrometeor Classification Ground Truth Experiment (WHCGT)
- Purpose: attempt to validate HCA performance when applied to winter surface precipitation
- Local to KOUN (out to ~150 km)
- Depended upon active use of a (pretty klunky) web form by interested members of the public; required knowledge of lat/lon and date/time by general public.

Getting the WHCGT Word Out

- Press Releases (TV, radio, newspapers)
- School contacts (interested teachers)
- NOAA Weather Radio (recurring announcement)
- NSSL Home Web Page
- OUN NWS Enhanced Web Page linked to NSSL mPING project page.

Winter Report Form

McAfee SiteAdviso

Done

Events and Reports

- Main events were 29 November, 2 January, and 11 Jan (start times).
- 3-4 smaller events also occurred.
- Events tended to contain a lot of freezing precipitation, followed by frozen precipitation.
- A few convective events displayed the complete gamut of winter precipitation types!

WHGCT Events and Reports (cont.)

- How many reports (total) for the 2006-2007 Winter season?
 - Before QC:

2,659

– After QC:

~2600

Typical Distribution of Observations

Temporal Obseravtion Distribution

Event 1: Spatial Distribution of Observations

Spatial Obs Distribution, Event 1, All Precip Types

Where We Are: Original HCA

Existing operational version of the hydrometeor classification algorithm

(HCA) distinguishes between 10 classes of echo

Classes

- 1. GC/AP ground clutter / AP
- 2. BS biological scatterers
- 3. DS dry aggregated snow
- 4. WS wet snow
- 5. CR crystals
- 6. GR graupel
- 7. BD "big drops"
- 8. RA light and moderate rain
- 9. HR heavy rain
- 10. HA hail (possibly mixed with rain)

Reflectivity

Class

Collapse Precip Types to the Bare Minimum

Collapse all observed and HCA types to only three:

- Liquid (includes rain, drizzle, freezing rain, freezing drizzle)
- Frozen (includes any kind of snow, ice pellets, hail)
- None

Original HCA Performance

Limit HCA data to the lowest data between 400 and 1200 m AGL that is not contaminated by ground clutter/AP (see Elmore 2011, WAF)

More Original HCA Performance

And Even More Original HCA Performance

A comparison of various precipitation classifiers submitted in the AMS Artificial Intelligence Contest (Lakshmanan et al. 2010, *BAMS*)

Existing HCA Purpose

- Quantitative precipitation estimation (QPE)
 - Each precipitation type uses a different f(Z, Z_{DR}, K_{DP}) ~ R formulation

- Not intended to be used for classifying precipitation at the ground.
 - Yet, that's a natural response.

Problems Applying HCA at the Surface...

- Classification is made on conical surfaces, not at the ground
- Does not identify precipitation types associated with transitional winter weather (e.g., freezing rain, ice pellets/sleet, mixtures)
- No thermodynamic environmental information is utilized
 - The algorithm is "local" doesn't use vertical profiles of radar and thermodynamic variables
- Assumes monotonic dependence of temperature with height (it's always rain everywhere below the highest melting layer)
- Does not work well in situations with low bright band
- No information about hail size

Building HCA2 (WSHCA)

Data Driven

- Because we will soon have ~128 operational polarimetric radars, we can now depend on the data we gather to drive the nature of the classifier
- Will utilize statistical classifiers (neural nets, support vector machines, tree ensembles, random forests, etc.)
- But... We must have estimates of the environmental conditions
 - Hourly HRRR analysis serves as a proxy for the real atmosphere
- Must have observations of the precipitation type at the surface
 - ASOS won't do as it can't report on mixed types and can't report ice pellets. Besides, there aren't enough of them...
 - Enter Winter SHAVE and PING!

"Active" Observation Gathering: Winter **S**evere **H**azards **A**nalysis and **V**erification **E**xperiment

Observations of SFC Precip Type

WINTER SHAVE

3 Feb 2012 – 8 Mar 2012

- 1266 reports (39% within 100 km of dual pol WSR-88D radars)
- 17 different dual pol WSR-88D radars in 11 states
- 14 distinct storm events under umbrella of dual pol WSR-88 radars

HAIL

1 Jan 2012 – 31 Aug 2012

- 8910 reports (83% small hail,
 15% large hail, 2% giant hail)
- 48 different dualpol WSR-88D radars

HRRR Analysis Soundings

	Accuracy	POD	POFD	FAR	CSI	PSS
SNOW	0.76	0.86	0.54	0.17	0.71	0.37
RAIN	0.76	0.46	0.15	0.50	0.32	0.37

Must Have More SFC Obs

- How many?
 - Ideally, hundreds of thousands!
- Precipitation Identification Near the
 Ground

PING

The PING App

Additional Types are:

Wet Snow
Snow
Ice Pellets/Sleet
Graupel/Snow Grains

6 h of One Day: Feb 8, 2013

0500 through 1100 EST; 5500 total PINGs

mPING

How Many PINGs So Far (19 Dec 2012 to late May 2013)?

- Total: 252852
- Total non-test reports: 237412
- Total none reports: 53849
- ~ 200000 reports of "weather"